

Towards the Mu3e Pixel Tracker with MuPix11: Construction & Performance Studies

Heiko Augustin for the Mu3e Collaboration Physikalisches Institut Heidelberg

32nd International Workshop on Vertex Detectors 2023

18.10.2023

Mu3e: Physics Motivation

- Search for the cLFV decay $\mu^+ \rightarrow e^+e^-e^+$ (vSM: BR < 10⁻⁵⁴)
- Current limit (SINDRUM) BR < 10⁻¹² @ 90% CL
- Sensitivity goal (Phase1): 1 in 10¹⁵ decays
- Up to 10⁸ decays per second
- Suppress background below sensitivity level

3

Experimental sensitivity

Invariant mass of signal decay, radiative decay and accidental background (Bhabha+Michel)

Momentum resolution crucial for detecting the peak at muon mass...

Material budget is key factor!

1 MeV resolution with 0.1% * X/X $_0$ per layer

Mu3e TDR at Nucl.Instrum.Meth.A 1014, 165679

- 10⁸ decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
 - Multiple Coulomb Scattering
 - Triplet Fit
 [arXiv:1606.04990v2]

- Good vertex and time resolution (100 µm & 500 ps)
- Excellent momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - Online reconstruction and selection

Helium Gas Cooling arXiv:2301.13813, arXiv:2307.14803

Spatial resolution dominates

Scattering dominates

- 10⁸ decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
 - Multiple Coulomb Scattering
 - Triplet Fit
 [arXiv:1606.04990v2]

- Good vertex and time resolution (100 μm & 500 ps)
- Good momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - ➡ Online reconstruction and selection

- 10⁸ decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
 - Multiple Coulomb Scattering
 - Triplet Fit
 [arXiv:1606.04990v2]

- Good vertex and time resolution (100 μm & 500 ps)
- Good momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - ➡ Online reconstruction and selection

The Mu3e Detector

Pixel detector requirements:

Pixel Size	Time Resolution	Material Budget	Efficiency
80 x 80 µm²	< 20 ns	0.1% X ₀ /layer	> 99 %

Mu3e TDR [arXiv:2009.11690]

- 10⁸ decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
 - Multiple Coulomb Scattering
 - Triplet Fit
 [arXiv:1606.04990v2]

- Good vertex and time resolution (100 μm & 500 ps)
- Good momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - ➡ Online reconstruction and selection

Tracking System - Vertex Detector Layer 0+1

Tracking System - Vertex Detector Layer 0+1

Flexprint

High Voltage - Monolithic Active Pixel Sensors

٠

- Commercial HV-CMOS processes: TSI 180nm (h18)
- Deep N-well diode
- Low Ohmic substrates (10-400 Ω cm)
- High voltages up to 100V
- Charge collection via drift

- **In-pixel electronics**
- Monolithic design: • Detection and Readout combined in one chip

MuPix/HV-MAPS R&D process

MuPix Architecture

- Clear separation of analog and digital electronics
- 2 comparator design
- Tuning/Trimming and masking available
- Priority encoder / column-drain readout
- Chip sub-divided into 3 matrices \rightarrow 1 Data link each + 1 multiplexed link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- . Timestamp sampling
- Readout statemachine manages
 column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

Courtesy: Frank Meier

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- . Digitisation in periphery
- . Timestamp sampling
- Readout statemachine manages
 column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- . Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- . Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- . Timestamp sampling
- Readout state machine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- . Digitisation in periphery
- . Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

MuPix10 & MuPix11

Pixel size [µm²]	80 x 80				
Sensor size [mm ²]	20.66 x 23.18				
Active size [mm ²]	20.48 x 20.0				
Pixel matrix	256 x 250				
Thickness [µm]	50, 70				
Substrate [Ωcm]	80, 370				
Data links	3+1				
Data speed [Gbit/s]	1.25				
Time-of-arrival [bits]	11				
ToT [bits]	5				
TS binning [ns]	8 (option for 1.6)				

From MuPix10 to MuPix11

- Removal of R&D features
 - → More pads for powering
- Improvement of powering grid
 - Less on-chip voltage drop
- Buffering of data lines
 - Full speed readout
 30 MHits/s per sub-matrix
- Re-synthesis of State machine
 - ➡ Fast configuration interface available
- Re-done pixel point-to-point connection
 - ➡ Reduced delays and parasitic couplings

Sensor Characterisation

- Lab commissioning
- Lab optimisation: Radioactive sources: ⁵⁵Fe, ⁹⁰Sr Time coincidence
- Testbeam Campaigns: DESYII (Hamburg, GER) MAMI (Mainz, GER) PSI piM1 (Villigen, CH)
- MuPix-Telescope
- Mimosa/Alpide-Telescopes

tuned

untuned

Summary - Results MuPix10

a 1800 -

1600

1400

1200

1000E

+++ tuned, VPDAC = 0x6

untured VPDAC = 0x0

unturned VPDAC = 0x6

[arXiv:2012.05868] & VERTEX2022

MuPix11 - First Light

MuPix11 - Efficiency for 50 and 70 μm

Mu3e: 50µm sensors for the vertex detector (~100 Sensors) 70µm sensors for the outer layers (~3000 Sensors)

MuPix11 - High Rate capability

MAMI - Beam spot on sub-matrix A

Beam rate measured with MuPix11

No Readout saturation visible @ 4 MHz Hitrate

Average Rate on "Hottest" Sensor 6 MHz

MuPix Fast Configuration Interface

- Chips of a ladder share a bus of clock, synchronous reset and configuration input
- Custom configuration protocol
- Commands interleavable
- ~400ms configuration time for 9 chip ladder
- Detector currently configurable < 4s
- ADC data sent out via regular data links

SIn		Input data		Input data	Γ	Input data			Input data
Chip0	Idle	Read & Interpret	Execute Task			(Idle)	Read & Interpret		
Chip1	Idle	Read & Interpret	Idle	Read & Interpret		Execute Task		āsk χ	
Chip3	Idle	Read & Interpret	Idle	Read & Interpret	Idle	χ	Execute Task		
Chip4	Idle	Read & Interpret	Idle	Read & Interpret	Idle	χ	Execute Task		

On-Chip Temperature Measurement

(Pre-)Production Status

In-House Wafer Handling

- Diced and thinned wafers delivered, on tape
- Equipement:
 - Vacuum chuck
 - Pick-up tools (tweezer & suction pen)
 - A lot of patience & time
- Pending on use case thickness vary between 50µm to 100µm + 750µm

Proto Vertex Detector

- Two layer vertex detector (MuPix10)
 - Gain operational experience
 - Test Mu3e readout chain

- First proto-detector with 6 chips modules
 - Still PCB based!!!

Operation in experimental conditions

DAQ and experimental concept

Operation in experimental conditions

With beam (2021)

With cosmics (2022)

Quality Control (QC)

- Quality assurance is key before a large scale detector assembly
- Testing after assembly is too risky and costly, since dismantling is impossible
- Press down mechanism with contact needles for prior testing

QC - Test procedures

- 2 Single Chip test sites
- First needle card test station being setup in Oxford
- QC procedure still being refined, but almost final
- Grading scheme still adjusting (pre-production)

The Vertex Detector

- First Vertex ladders have been produced
- Ladder QC under development in parallel to single chip QC
- Fully functional 50µm ladder in Hand
- Currently running beam time at PSI: First time in-beam commissioning of final ladder

Summary & Outlook

- Successful transition from MuPix10 to MuPix11
 - Everything functional, expected to fulfill Mu3e requirements
- QC procedures have been developed and implemented
 - First successful test of needle card for large volume testing
- Production of Vertex ladders started
 - First in-beam test still this week
 - Full vertex detector expected in Spring
- First ladders of outer pixel layers expected in Spring
- Start with detector commissioning next year

Backup

cLFV - Landscape

PSI - Beamline Upgrades

IMPACT Timeline

Quad - Module Telescope

A MuPix Module

- Chips glued and SpTAB-bonded to flexprint
- No additional components!
- 1.15‰ X₀ per layer
- Minimize dead space between the chips
- Only 11 µm dead silicon outside the guardring
- Power consumption limited to 400 mW/cm² (Sensors+Flex)

The Flexprint Environment

- 2 layer aluminum polyimide flexprint (LTU)
- Provides:
 Power & HV (parallel)
 Differential Signal I/O
- Only 1 supply voltage, but no LDO-regulators!
- Minimise I/O
- Flex design rules define PadOut

On-chip ADC

- ADC programmable through Mu3e configuration interface
- Allows measurement of on-chip voltages
- Data send out via 1.25 Gbit/s data links
- . ADC shows a nice linearity

Signal Line Crosstalk - MuPix8

Triple Crosstalk: hit induced in both neighbouring lines

Routing Optimisation - MuPix10

- Equalize but reduce crosstalk

 →miminise the length that two line are neighbouring
 (¼ of total length, 2cm)
- ~12% triple crosstalk expected
- Make Crosstalk easily detectable
 → neigbouring signal lines are not
 neigbouring pixels
- Crosstalk can be removed, possibly already during the data taking
- Even more improvement expected for MuPix11

Beyond MuPix11 – Roadmap -- Architectures

Production of inner layers

Heidelberg/PSI

Quick demo: https://youtu.be/0SYqHSbH3U4

Production of outer layers

Oxford/Bristol/Liverpool

