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Disclaimer

» There is no agreed plan for a further upgrade of the Inner Tracker

** Not even within the Tracker group

> Will report some of the ideas being considered
* Focus on requirements and constraints
*+ Touch on some general concepts being explored

** Will not discuss implementation options/details



Motivations

» Some parts of the Inner Tracker will not survive the eg4tire HL-ZIB_HC program
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> New technologies are becoming available (notably) for ASICs and data links
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% Limited opportunities for real applications on the horizon

> A further upgrade of the Inner Tracker may give an opportunity for an application
of the ongoing developments, adding value to the HL-LHC program



Possible timeline
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Reasonable target for a phase-3 IT upgrade?

Shutdown/Technical stop

Protons physics

Ions

Commissioning with beam

Hardware commissioning/magnet training

Somewhat less than Y2-way of the HL-LHC program in terms of expected luminosity
The target date may change if the HL-LHC program changes



Possible scope

> Improve the performance of the tracking near the IP
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** Re-build inner regions with more advanced technologies

o Improve d, and z, resolution
o Enhance pileup mitigation and b-tagging (“core business” of the Inner Tracker)

» Extend coverage of timing information in CMS from presentn =3 upton =4
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% Introduce one or two “timing disks” in the forward
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signal VBF jet

Physics case for forward timing

» Measurement of Higgs self-coupling

P Measurement of
------------ S Higgs self coupling
. at HL-LHC

*» Improved background rejection in the relevant n range

“* No significant loss of efficiency for VBF and b jets
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CMS Simulation Work in Progress
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How to improve the inner regions

» Smaller pixels?

“ Strawman layout: same concept as in phase-2, scaled down in size by x0.6

. 25%100 [lmz pixe|s — 15%60 Ilmz pixels in the sensor I 80 um charge collection 2 60 um charge collection
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» Detection threshold and TOT precision scale accordingly
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Performance improvement

Input: hit resolution scaled down by a factor 0.6 @ Small pixels

B Standard pixels
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s Improvement of ~5% in d, and z, resolution integrated above 0.9 GeV

X/

% Basically no improvement below 1 GeV

s Improvement from 0 to 10% between 1 GeV and 10 GeV
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Performance improvement

Input: hit resolution scaled down by a factor 0.6

©® Small pixels
B Standard pixels
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Output:

TP n (PCA to beamllne)

Transverse IP resolution

s Improvement of ~5% in d, and z, resolution integrated above 0.9 GeV

% Basically no improvement below 1 GeV

s Improvement from 0 to 10% between 1 GeV and 10 GeV

Ratio wrt
standard pixels

e 20% improvement
* in the most
. central region

TP n (PCA to beamline)

Longitudinal IP resolution



Performance improvement

» Compare better hit resolution (*x 0.6) with variation of material budget (x 15%)
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> OutpUt: Transverse IP resolution Longitudinal IP resolution

* An increase in material budget can easily outweight any benefit from improved hit resolution

J/

+ Reduction of material can be more beneficial than use of smaller pixels
* In most of the n range and except for very high pr

J/

< Emphasis must be on material reduction
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Development guidelines for inner regions

» Material budget is substantially driven by power budget

“* Power distribution, cooling distribution, cooling contacts

» Reducing the power budget is a primary goal for the inner regions

» Use of 3D sensors is a must (at least for TBPX layer 1)
% The use of planar sensors would aggravate the cooling requirements

» Granularity and functionality of the phase-2 detector is the good starting point
< Enhancements can be considered only if they do not aggravate the power budget
% Possible increase in granularity is in any case limited by the use of 3D sensors

» More aggressive low-mass system design is needed to improve performance
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Timing disks — sensors technology

» ldeal goal: implement timing precision within same power budget and
without degrading the hit resolution
» Exploit lower occupancy using resistive LGAD sensors
% Ongoing R&D
> Required rad tolerance 3+4x10'°> 1 MeV n,, at the lower edge

CMS Phase-2 Simulation tt, PU 200, {s = 14 TeV

pancy

> Possible cell size 100x100 um?

= Channel density reduced by a factor of 4 wrt phase-2 detector

s Expected hit resolution ~ 5 um
= Significantly better than the phase-2 detector
% Expected occupancy of 5x10~3 at the lower edge

= If, e.g., the signal is contained in 2x2 cells
= Other (better?) geometries under study
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Timing precision

> If resistive LGAD can be used and the target performance is achieved:
+ Phase-2 tracking layers can be replaced with tracking+timing layers with no drawbacks
% Replacing two disks is straightforward

s Target timing precision on tracks (~ 30 ps) achieved with ~ 50 ps precision on hits

> If a different sensor technology has to be used (e.g. trench-isolated LGAD):
% Hit resolution does not profit from charge sharing

% Increase granularity to mitigate degradation of hit resolution
= Trade off with power budget

= Power budget of phase-2 detector can be exceeded for the timing disks, but not by a large factor

% Depending on achievable granularity and power, replacement of one disk only may be preferable
= Aggravates requirement on timing precision — feeds back into power density

» More complex optimization of granularity vs timing precision vs power density vs number
of timing layers



Timing precision

> If resistive LGAD can be used and the target performance is achieved:
+ Phase-2 tracking layers can be replaced with tracking+timing layers with no drawbacks
+ Replacing two disks is straightforward

s Target timing precision on tracks (~ 30 ps) achieved with ~ 50 ps precision on hits
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N.B. If resistive LGAD are made to work
effectively for TEPX disks, they are a valid
upgrade for all the 2x2 modules of the IT
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First look at chip requirements

Inner regions Timing disks

Pixel size 25 x 100 um?2 Pixel size 100 x 100 um?
Detection threshold <« 900 e- Timing resolution < 50 ps
Power density « 0.6 W/cm? Power density < 0.6 W/cm?

Chip size (h x w) (16.8 x ~ 21.6) mm?
Output bandwidth < 5 Gbps

Serial powering infrastructure
Trigger and latency as in phase-2

Interface to silicon photonics link

Can be configured as a single project - or even a single chip with two options for the front-end part
The requirements seem to be plausible for a development in 28 nm
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Converge on chip specs
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Reasonable target for a phase-3 IT upgrade?
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Ideas for low-mass system design

» Focus initially on TBPX staves (24 staves in L1, 48 staves in L2)

» Cooling distribution and cooling contact embeeded in mechanical structures

Build-up of the cold plate of the ALICE ITS stave /7,
Operated with leakless water cooling o b flecce (20 )
Power Bus . ’ b 2 ‘\ > 2 ‘ / Graphite foil (30 pm)J_
—’ 7 - e
e Y
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glue

heater (chip)

cold plate: 1 mm ID, g ~ 0.5 W cm?, G ~ 1200 kg m2s™
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R&D to adapt to high-pressure CO, operation

mean, observed section

Thick kapton tubes (bad thermally) 0 | ) | Comparison
Steel tubes (bad for mass) i * between cold

and steel version
. ‘ ‘ ‘ =SS tubes ATyppronss ~5°C

Titanium is maybe the right choice? om0 17
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Ideas for low-mass system design

» Focus initially on TBPX staves (24 staves in L1, 48 staves in L2)

> Integrated design of stave electronics

Cold plate with embedded pipes

~20 cm
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Ideas for low-mass system design

» Focus initially on TBPX staves (24 staves in L1, 48 staves in L2)

> Integrated design of stave electronics

Single-sensor flip-chip assemblies

~20 cm
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Ideas for low-mass system design

» Focus initially on TBPX staves (24 staves in L1, 48 staves in L2)

> Integrated design of stave electronics

All-in-one flex (Alu + Cu)
wirebonded to the readout chips

v

~20 cm




Ideas for low-mass system design

» Focus initially on TBPX staves (24 staves in L1, 48 staves in L2)

> Integrated design of stave electronics

End-of-stave concentrator

chip and photonics link : == i
No on-stave connectors
Minimal thermal interfaces
Reduce e-links length from 2 m to ~ 20 cm
Remove portcards from service cylinder
50G of data: reasonable use of photonics link
Potential for large mass saving
Challenging 10-chip assembly

< 21

~20 cm




Thanks for your attention



