

The plans of the future upgrade LHCb Tracker (Mighty Tracker)

Toko Hirono* on behalf of the LHCb Collaboration

* Institute for Data Processing and Electronics, Karlsruhe Institute of Technology

KIT - The Research University in the Helmholtz Association - www.kit.edu

LHCb Upgrade II

- LHCb upgrade II is planned for Long Shutdown 4 to cope with the new operating conditions of High Luminosity LHC (L_{int} = 300 fb⁻¹, L_{inst} = 1.5 x 10³⁴ /cm² /s)
 - Higher radiation dose
 - Increased particle multiplicities and rates
- Principle of LHCb Upgrade II:
 - General layout of the detector remain unchanged
 - Sub-detector (*incl.* Mighty Tracker) will be upgraded

Mighty Tracker in LHCb experiments

- LHCb is a forward-arm spectrometer
- Upgrade I (SciFi Tracker)
 - 3 tracking stations downstream of the magnet
 - Scintillating fibers
 - \rightarrow Now in operation
- Upgrade II (Mighty Tracker)
 - 3 tracking stations
 - Scintillating fibers
 - HV CMOS monolithic active pixel sensor (HV-MAPS)

→ Higher hit-rate capability and radiation hardness to survive in Run 5, 6

Mighty Tracker in LHCb experiments

- LHCb is a forward-arm spectrometer
- Upgrade I (SciFi Tracker)
 - 3 tracking stations downstream of the magnet
 - Scintillating fibers
 - \rightarrow Now in operation
- Upgrade II (Mighty Tracker)
 - 3 tracking stations
 - Scintillating fibers
 - HV CMOS monolithic active pixel sensor (HV-MAPS)

→ Higher hit-rate capability and radiation hardness to survive in Run 5, 6

Mighty Tracker (Outer Tracker)

- Moderate occupancy region
 - 6 SciFi layers / station = 18 layers
 - Ongoing R&D to mitigate rad-damage, increase hitrate capability
 - Fibre improvements
 - Cryogenic cooling for lower noise
 - Micro-lens enhanced SiPM to concentrate signal and reduce noise from inactive region

Mighty Tracker (Inner Tracker)

- 28 HV-MAPS modules / station
- Chips on both side to cover entire module

KIT ASIC and Detector Laboratory, IPE

Mighty Tracker

 Inner Tracker (High occupancy regions)

- 28 HV-MAPS modules / station
- Chips on both side to cover entire module

Front view

KIT ASIC and Detector Laboratory, IPE

Mighty Tracker

 Inner Tracker (High occupancy regions)

- 28 HV-MAPS modules / station
- Chips on both side to cover entire module

Silicon pixel detector

Sensor and readout electronics in one chip

Readout is isolated from substrate(sensor)

 \rightarrow High bias voltage \rightarrow Charge collection by drift \rightarrow rad-hard

Front view

MightyPix (HV-MAPS for Mighty Tracker)

Requirements:

- Pixel size: < 100 µm x 300 µm</p>
- Hit-rate capability: > 17 MHz/cm²
- In-time efficiency: > 99% with correct assignment to 25ns bunch-crossing (BX)
- Radiation hardness: > 6 x 10¹⁴ n_{eq}/cm²
- Noise rate: < 5Hz / pixel</p>
- Power consumption: < 150 mW/cm²
- Compatible with the LHCb readout system
 - 4 x 1.28 Gbps data links/chip
 - Slow control
 - Timing and Fast Control (1command / BX)

MightyPix (HV-MAPS for Mighty Tracker)

Requirements:

- Pixel size: < 100 µm x 300 µm</p>
- Hit-rate capability: > 17 MHz/cm²
- In-time efficiency: > 99% with correct assignment to 25ns bunch-crossing (BX)
- Radiation hardness: > 6 x 10¹⁴ n_{eq}/cm²
- Noise rate: < 5Hz / pixel</p>
- Power consumption: < 150 mW/cm²
- Compatible with the LHCb readout system
 - 4 x 1.28 Gbps data links/chip
 - Slow control
 - Timing and Fast Control (1command / BX)

HV-MAPS from other projects

Results from the HV-MAPS Family

MightyPix R&D

Finding optimum pixel size, operating temperature, power consumption for Mighty Tracker using a dedicated prototype and various HV-MAPS chips from other projects

MightyPix (HV-MAPS for Mighty Tracker)

Requirements:

- Pixel size: < 100 μm x 300 μm</p>
- Hit-rate capability: > 17 MHz/cm²
- In-time efficiency: > 99% with correct assignment to 25ns bunch-crossing (BX)
- Radiation hardness: 6 x 10¹⁴ n_{eq}/cm²
- Noise rate: < 5Hz / pixel</p>
- Power consumption: < 150 mW/cm²
- Compatible with the LHCb Readout system
 - 4 x 1.28 Gbps data links/chip
 - Slow control
 - Timing and Fast Control (1command / BX) -
- Dedicated prototype

MightyPix1: the First Prototype

- The first prototype chip deliciated to Mighty Tracker
 - TSI 180nm process
 - Resistivity of wafer: 370 Ωcm
 - Chip size: Full length (20mm) x ¼ width (5mm)
 - 3 blocks:
 - Pixel Matrix
 - Sensor matrix with analog readout
 - Pixel size: 55 x 165 μm
 - Hit-buffer with ToA and ToT per pixel
 - Digital periphery
 - Column-drain architecture readout logics
 - 1.28Gbps x 1 data link
 - I2C interface for slow control
 - Timing and Fast control command decoder
 - 40MHz to 640MHz PLL x 2 types

MightyPix1: the First Prototype

- The first prototype chip deliciated to Mighty Tracker
 - TSI 180nm process
 - Resistivity of wafer: 370 Ωcm
 - Chip size: Full length (20mm) x ¼ width (5mm)
 - 3 blocks:
 - Pixel Matrix
 - Sensor matrix with analog readout
 - Pixel size: 55 x 165 µm
 - Hit-buffer with ToA and ToT per pixel
 - Digital periphery
 - Column-drain architecture readout logics
 - 1.28Gbps x 1 data link
 - I2C interface for slow control
 - Timing and Fast control command decoder
 - 40MHz to 640MHz PLL x 2 types

MightyPix1: the First Prototype

29 Columns The first prototype chip deliciated to Mighty Tracker TSI 180nm process Resistivity of wafer: 370 Ωcm **Pixel Matrix** Pixels . Chip size: Full length (20mm) x ¹/₄ width (5mm) 3 blocks: Pixel Matrix Sensor matrix with analog readout Hitbuffers Hit buffer Pixel size: 55 x 165 µm 6b current DACs ColConfig Hit-buffer with ToA and ToT per pixel 10b voltage DACs Col1 Col2 Col27 **Digital periphery** CMOS PLL Column-drain architecture readout logics Confiabits Readout Logic CML PLL 1.28Gbps x 1 data link Singleended 2-wire max. 5 MHz Slow control 32b x 40 MHz (I2C) I2C interface for slow control De-Mux Timing and Fast Serial out FEreset, BXreset, Snapshot Differential 320 Mbps Timing and Fast Control Serializer LVDS Scrambler control command decoder SYNC (TFC) 40MHz to 640MHz PLL x 2 types N. Striebig, KIT

First results of Mightypix1

- Submitted in 2022
- Tests started in Summer of 2023
- Basic functionalities including newly implemented digital interfaces are tested using electrical signals & radioactive sources
 - PLL
 - 1.28 Gbps data link
 - I2C interface
 - TFC command decoder
- Waiting for irradiation and beam tests

Next Step (MightyPix 2)

- First full size chip (cf. Mightypix1 = ¼ size)
 - Deleting features for debugging
 - 4 x 1.28Gbp data links
 - ~100% readout efficiency at the hit rate of >17MHz/cm²
 - Serial powering and more to test in MightyPix modules

Simulated Readout Efficiency (MightyPix2)

Summary

- Mighty Tracker is designed for LHCb upgrade II
 - "Hybrid tracker" of SciFi and HV-MAPS (MightyPix)
 - R&D of SciFi for mitigate rad-damage, increase hit-rate capability
 - R&D of MightPix
 - Ist prototype chips (full column-length x 1/4 width of the final chip) were produced
 - Basic functionalities incl. the digital interfaces has been tested
 - Tests with beam is planned in the beginning of 2024 (efficiency, time resolution etc.)
 - Conceptual design of MightyPix 2 has been already started

Back up

HV-MAPS Module (Control & DAQ)

Focused Ion Beam Fixing (FIB) of Mightypix1

- There is a mistake in MightyPix1 design
 - Better design verification
 - The mistake was overlooked during the design-verification (simulation)
 - Repairing the mistake by FIB
 - Cutting and adding lines in the chip
 - 5 FIBed chips \rightarrow 4 FIBed and repaired chips
 - 18 more chips were FIBed