ITS3: next ALICE upgrade of the Inner Tracking System for LHC Run 4

Filip Krizek, NPI CAS

for the ALICE Collaboration

ALICE in LHC Run 3 and Run 4

• ALICE Physics goals for Run 3 & 4

- low- $p_{_{\rm T}}$ open HF hadrons and quarkonia
- low-mass dielectrons
- light nuclei, antinuclei and hypernuclei

• Key Run 3 upgrade: Inner Tracking System (ITS2)

- Follow up upgrade in Run 4: Inner barrel of ITS (ITS3)
 - installation 2026 2028
 - in operation 2029 2032

ALICE

Inner Tracking System in Run 3

7 layers of Monolithic Active Pixel Sensors (MAPS)

	Layers	Radii (mm)	X ₀ /layer
Inner Barrel	3	<mark>22</mark> - 42	0.35%
Outer Barrel	4	194 - 395	1.1%

More details in talk by Andrea Sofia Triolo from Mon 16th Oct

F. Krizek

Material budget considerations for the Inner Barrel of ITS

ITS Inner Barrel has 0.35% X_0 /layer but Si makes 1/7th of the total only

Is it possible to further reduce material budget of the inner ITS layers?

- Removal of water cooling → reduce power consumption & move sensor periphery to chip edge
- Removal of circuit board \rightarrow integrate power and data buses on the chip
- Removal of mechanical support \rightarrow utilize stiffness of large size, bent Si wafers F. Krizek ALICE ITS3

Inner Barrel of ITS for Run 4 (ITS3)

ITS3 will comprise 6 chips only!

Sensor length 266 mm x width 55 / 74 / 93 mm Thickness < 50 μ m Radial position 18 / 24 / 30 mm Mechanical support by carbon foam spacers Material budget 0.05% X₀/layer MAPS produced by 65 nm CMOS process 1D stitching on 300 mm wafers Spatial resolution requirement 5 µm Expected TID 10 kGy & NIEL 10¹³ 1 MeV n_{ar} / cm²

Gain in performance with ITS3

- Improvement in pointing resolution by a factor of 2 over all momenta
- Increase of tracking efficiency for low- p_{T} particles and extension of the low- p_{T} reach

ALICE-PUBLIC-2018-013

Low-p_T heavy-flavor baryons with ITS3

ALICE-PUBLIC-2023-002

ITS3 R&D lines

- Sensor design in 65 nm CMOS technology
- Bending of thin silicon sensors & their characterization
- Mechanical support
 - Development of assembly procedure
 - Study of carbon foam support structure
- Air cooling

Sensor Design

Multi Layer Reticle 1 (MLR1):

- Concentrated effort ALICE ITS3 together with CERN EP R&D
- 3 process variants:
- DPTS Digital Pixel Test Structure
- APTS Analog Pixel Test Structure
- Circuit Exploratoire 65 nm

More details in talk by Anna Villani on Wed 18th Oct at 11:30

Characterization of DPTS

- DPTS 32x32 pixels
- Pixel pitch 15 µm
- Performance of in-pixel front end
 - ALICE ITS, NIM A 1056 (2023) 168589

DPTS is sufficiently radiation hard for ITS3

More details in talk by Anna Villani on Wed 18th Oct at 11:30

ALICE

Stitching in nutshell

ALICE ITS3

11

Stitching in nutshell

Exploration of sensor stitching on 300 mm Wafers in Engineering Round 1

ER1 targets to explore:

- Stitching in one direction for metal traces of power and data buses
- Production yield
- Power distribution and consumption
- Readout over long distances (26 cm)
- Pixel architecture

ER2: final sensor prototype

ER3: final sensor production

Stitching on 300 mm wafers for 65 nm CMOS technology

Monolithic Stitched Sensors

First stitched sensors in HEP

Monolithic Stitched sensor with Timing (MOST)

- Size: 2.5 x 259 mm, 0.9 MPixel, digital readout

Monolithic Stitched Sensor (MOSS) —

- Size: 14 x 259 mm, 6.72 MPixel, digital readout

ER1 wafer \varnothing 300 mm

MOSS = Monolitic Stitched Sensor

Assembling chip carrier card with MOSS

MOSS carrier card

MOSS carrier card

Full MOSS chip test system concept

The concept foresees 3 different cards.

- MOSS-CHIP carrier card 2800 pads
- 5x Proximity Board
 1 card x 4 quadrants + 1 for stitched backbone supply of power, control, readout, ADCs
- **5x automation and readout modules** steers the proximity boards and interfaces the sensor control and readout with a computer.

Ongoing tests:

- resistance
- power ramps
- test beams

3 cm

Ň

MOSS chip in test beam

Practicing ITS3 assembly

Bending full scale chip, 50 µm thick to radius 19 mm

Aligning FPC and the sensor

Bonding the curverd sensor

F. Krizek

ALICE ITS3

ALICE

Practicing ITS3 assembly

Gluing of foams and additional supports

Gluing of the air distributor

Air distributor

F. Krizek

Assembled first layer of ITS3

Mechanics and cooling solutions

- Limited dissipated power ⇒ **air cooling** at ambient temperature
- Low material budget ⇒ carbon foam used as support and heat exchanger

Higher thermal conductivity but also higher density

Thermal and mechanical stability tests

Air cooling

- Sensor temperature must stay < 30 $^{\circ}C \Rightarrow 8$ m/s room temperature air flow needed
- Good agreement with Computational Fluid Dynamics model

F. Krizek

Vibrational tests

Power spectral density of the displacements of Layer 2

Side and top view of natural frequencies of Layer 2.

- First natural frequency of L2 with integrated heaters 500 Hz
- Simulation by Computational Fluid Dynamics model with decoupled fluid-structure interaction
- Displacements caused by the air flow < 0.5 μ m

Characterization of bent sensors

- µITS3: 6 ALPIDE chips bent to the same radii as ITS3 layers
- Efficiency and spatial resolution are consistent with flat ALPIDE

F. Krizek

ALICE ITS3

Summary

- Technology for ALICE ITS Inner Barrel upgrade for LHC Run 4: large scale, bent monolitic active pixel sensors
- R&D :
 - Silicon flexibility and bending proved with routine bending tests
 - Bent and flat sensors have compatible performance
 - Sensors prototypes are radiation hard up to NIEL 1014 1MeV $n_{eq}\ cm^{-2}$
 - Characterization of stitched sensors ongoing
 - Investigation of the air cooling and associated vibrations ongoing
- ITS3 R&D paves the way to thin, low-power sensors for the use in future ALICE3

Monolithic Stitched Sensor

Reconstruction of hypernuclei with ITS3

ALICE-PUBLIC-2023-002

ITS3 improves impact parameter measurements of daugher ³He decay

TPSCo 65 nm CMOS: benefits & features

Tower Partners Semiconductor Company (TPSCo)

- Benefits of 65 nm vs 180 nm
- smaller feature size \Rightarrow better spatial resolution
- larger wafers: 300 mm vs 200 mm \Rightarrow final sensor 27 \times 9 cm^{2}
- lower voltage : 1.2 vs 1.8 V \Rightarrow lower power consumption
- thinner sensitive layer (~ 10 μm) $~\Rightarrow$ lower material budget
- Provides 2D stitching
- 7 metal layers
- Process modification for full depleation introduced: low dose n-type implant with gaps
 - reduces charge sharing
 - improves detection efficiency and speed

DPTS – Spatial resolution after irradiation

Irradiation does not have stong impact on performance

ALICE ITS3

ALICE

DPTS in-pixel efficiency for irradiated sensor

 10^{15} 1 MeV n_{eq} cm⁻² irradiated sensor 160 eV threshold 10 GeV positive hadrons

Efficiency losses in pixel corners due to charge sharing

ALICE ITS, NIM A 1056 (2023) 168589

F. Krizek

ALICE ITS3

ALICE