Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Tomoka IMAMURA, Sayuka KITA, Junya NISHINO,

Yua MURAYAMA, Issei HORIKOSHI,

Koji NAKAMURA^A, Kazuhiko HARA

University of Tsukuba, KEK^A

32nd International Workshop on Vertex Detector 17/Oct/2023

Detectors with high timing resolution

Future high energy physics experiments

- Higher Energy
- Higher luminosity

Event pile-up will be an issue

- 140pileup@HL-LHC
- 1500pileup@FCC-hh

Detector with...

Good spatial resolution

Solution

Good timing resolution

More robust reconstruction!

LGAD technology

•Low-Gain-Avalanche-Diode

p+ implantation below the n+ implantation to make gain layer
Local high electric field in p+ layer develops avalanche
Large amount of e/h pairs are created per initial electron

Creation of large signal in the vicinity

Good timing resolution

17/Oct/2023 Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

AC-LGAD detector

• DC-LGAD

AC-LGAD

- Each electrode has individual gain layer
- With Junction Termination Extension and p-stop
 Low fill factor

Uniform gain layer under segmented electrodes

AC-LGAD detector has been successfully developed down to 100um pitch pixel detector with 100% fill factor

n

arxiv:2305.12355

p-

Measurement setup

- Sensors on amplifier board
- Wire-bonded sensor electrodes to amp inputs
- Each amp channel employs two-stage fast charge sensitive amp IC
- 16 channels available for one board
- ⁹⁰Sr **DAQ** system

MCX cable

MCP-PMT 240 as timing reference

Electron from ⁹⁰Sr beta decay

Beta-ray

In the bath to keep the temperature

LeCroy Waverunner 8000

- 350MHz 2GHz
- 10GS/s
- 8ch

cable

LGAD Sensor

- Infra red laser (1065nm)
- Laser size σ ~1um
- Inject through slit made in the sensor

Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors 17/Oct/2023

Timing resolution

$$\sigma_t^2 = \sigma_{tw}^2 + \sigma_j^2 + \sigma_L^2$$

<u>Time walk</u>

- Minimize contribution by adopting constant fraction
- Use a fraction of pulse height max instead of a fixed threshold

$$\frac{\sigma_{j}}{\sigma_{j}} = \frac{\sigma_{n}}{\left|\frac{dV}{dt}\right|} = \frac{\sigma_{n}}{\left|\frac{S}{t_{r}}\right|} = \frac{t_{r}}{\left|\frac{S}{\sigma_{n}}\right|}$$

- σ_n : noise sigma , t_r : rise time ${\it S}$: signal size
- **Big** signal size is important to reduce jitter effect
 - + the smaller noise as well
 - Determine the best bias voltage

<u>Landau noise</u>

- Non uniform energy deposition of MIP
- Thinner sensors should reduce this effect
- Laser measurement results do not include this effect

Timing resolution results

Laboratory measurement

Lab meas	50um	30um	20um
Timing resolution	38.8ps	31.5ps	31.2ps
Jitter	9.8ps	11.8ps	15.9ps
Landau noise	37.5ps	29.2ps	26.8ps

Thinner samples have better timing resolution due to landau noise

- 2x2 pad with 500um square electrodes
- Injected 120GeV Proton beam at FTBF

Uniform timing resolution over the detector has been observed

17/Oct/2023 Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Radiation damage on LGAD

Future high energy physics experiments

- Higher Energy
 Detectors will be exposed to large amount of radiation
- Higher luminosity

- e.g. Inner trackers in HL-LHC ATLAS at 4000fb⁻¹ $2 \times 10^{16} n_{eq}/cm^2$ 10MGy

Acceptor removal

One of the major effects of radiation damage of LGAD
 Acceptor doping concentration in gain layer is reduced by radiation damage
 Shallow dope
 Radiation damage
 Defect complexities ______
 need to apply higher bias voltage

Single Event Burnout

- For bias voltage with average E-field of >12V/um, a large energy deposit happens to create a crater
- − Our sensors are 50um → upper limit is 600V

Ideas to improve radiation hardness

Need to reduce the bias voltage after the irradiation
 need to reduce the effect of acceptor removal

Compensation Partially-Activated-Boron

- Made samples Irradiation test IV & Signal measurement
- Irradiation test
 - CYRIC at Tohoku University
 - 70MeV proton beam at 7nA~1600nA
 - Temperature was set to -15°C
 - Uniform scanning over the sensors
 - 7×10^{15} , 3×10^{15} , 6×10^{14} , $8 \times 10^{13} n_{eq}/cm^2$

Compensation(I)

Result of first samples
10² = 10²

6×10¹⁴

2 × 4 015	163160 30	resteu samples			
3 × 1013		p+ Boron	n+ Phosphorous	effective p	
	2.5B+1.5P	2.5a	1.5a	а	
-irrad	1.5B+0.55P	1.5a	0.55a	0.95a	
1.5B+0.55P non-irrad	Reference	а	0	а	

IV curves are overlapped with reference sample
 No significant improvement has been observed

irrad 10⁻¹ 10⁻² 10⁻² 10⁻³ Reference of 14 Compensation 1.5B+0.55P foe 14 Compensation 2.5B+1.5P foe 14 Reference 3e 15 Compensation 1.5B+0.55P 3e 15

300

Bias Voltage [V]

600

700

Compensation 2.5B+1.5P 3e15

500

400

17/Oct/2023

 10^{-5}

Current [µA]

10

Non-

100

200

Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Compensation(II)

- Higher dope concentration will help suppressing acceptor removal effect
 - Reduce the reduction factor of acceptor $N_A(\emptyset) = N_A(0) \cdot e^{-C_A \emptyset}$
- Result of higher dope concentration samples

	p+ Boron	n+ Phosphorous	effective p+	
10B+9.2P	10a	9.2a	0.8a	
5B+4.05P	5a	4.05a	0.95a	
Reference	а	0	а	

- Signal measured using ⁹⁰Sr β
- Operation voltage is defined as the voltage with the largest S/N

Compensation with high dope concentration reduces acceptor removal effect

Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Compensation – MPV of non-irradiated samples

- •Higher dope concentration seems reduce acceptor removal more
 - No signal has been observed with 10B+9.2P sample...
- Signal MPV dependence on dope concentration

- Only for non-irradiated samples
- Signal size is reduced by total dope concentration of gain layer implantation
- Difficult to improve by simply increasing dope concentration
- Compensation method will be developed with carbon dope as the next step...

Partially-Activated-Boron(I)

B_s substitutional Boron B_i interstitial Boron

combine with Oxygen

Clean up the oxygen before irradiation to prevent B_i from becoming B_iO - new donor B_i deliberately left in p+ layer takes oxygen with it

Result of first samples

- Break down voltage was ~50V
 Not enough to observe signal
- Break down voltage of irradiated samples seem less than reference sample ...?
 - Break down voltage tuned samples have been tested as second samples

Partially-Activated-Boron(II)

17/Oct/2023

Second samples ... Inject additional boron over fully activated boron

Result of break down voltage tuned samples

Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Conclusion

- Detector with high timing resolution is needed
 - LGAD detector is being investigated as a detector with superior timing resolution
- AC-LGAD detector is successfully developed
 - Finely segmented pixel sensor solving fill factor problem
 - ~30ps timing resolution with laboratory measurement setup
 - -~20ps timing resolution with 120GeV proton beam
 - Uniformed timing resolution

•Two novel ideas to improve radiation hardness have been tested

- Compensation method

higher dope concentration seems effective in reducing acceptor removal effect, but shows smaller pulse

- Partially-Activated-Boron method

No significant improvement has been observed so far

Back up

Bias voltage dependence of signal and noise

17/Oct/2023

Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Tested samples and results

mnonostier

Compensation				
	p+ Boron	n+ Phosphorous	effective p+	
10B+9.2P	10a	9.2a	0.8a	
5B+4.05P	5a	4.05a	0.95a	
2.5B+1.5P	2.5a	1.5a	а	
1.5B+0.55P	1.5a	0.55a	0.95a	
Reference	а	0	а	

Partially-Activated-Boron

- **1PAB**
 - Once the activation is complete, inject an equal amount of Boron and left inactivated

0.5PAB

 Once the activation is complete, inject a half amount of Boron and left inactivated

17/Oct/2023

Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Degradation due to radiation damage

non-linear function of fluence

17/Oct/2023 Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

TID damage

•Already studied

• Gamma ray irradiation with ⁶⁰Co

The effect of TID damage is small*

*Compare with proton irradiation

Dosimetry

Calibration

- Efficiency due to solid angle
 - Depending on the distance
 - 10mm
 - 2 30mm
 - 3 60mm
- Energy efficiency
 - $\gamma \rightarrow$ photoelectric absorption + Compton scattering *with 600

*with ⁶⁰Co, ¹³⁷Cs →extrapolation

Ge detector

17/Oct/2023 Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

C_A and C_D relations

Assuming an exponential reduction in irradiation dose^[2]

p+
$$N_A(\emptyset) = N_A(0) \cdot e^{-C_A\emptyset}$$
 C_A reduction factor of acceptorn+ $N_D(\emptyset) = N_D(0) \cdot e^{-C_D\emptyset}$ C_D reduction factor of donoreffective p+ $N_A(\emptyset) - N_D(\emptyset) = N_A(0) \cdot e^{-C_A\emptyset} - N_D(0) \cdot e^{-C_D\emptyset}$

•Using the relation from the IV measurement results

- Overlap among all three conditions

ReferenceCompensationp+=effective p+

17/Oct/2023

 $\boldsymbol{C}_{A} = \boldsymbol{C}_{D}$

$$N_A(\mathbf{0}) \cdot e^{-C_A \emptyset} = N_A(\mathbf{0}) \cdot e^{-C_A \emptyset} - N_D(\mathbf{0}) \cdot e^{-C_D \emptyset}$$

Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

•Signal measurement with Sr90

- Non-irradiated samples : 20°C
- Irradiated samples : -20°C

Cross talk of AC-LGAD

17/Oct/2023 Development of HPK Capacitive-Coupled LGAD (AC-LGAD) detectors

Gain of LGAD detector

Some dependence of break down voltage

