BOSTON UNIVERSITY

Precision Timing with the CMS MIP Timing Detector for High-Luminosity LHC

Giacomo Zecchinelli on behalf of the CMS collaboration

Vertex 2023 - Sestri Levante 17/10/2023

- Why timing matters
- CMS MIP Timing Detector
- BTL/ETL:
 - Sensors technology, design and performances
 - Electronics and services
 - Assembly and construction
 - Current status
- Summary and Outlook

Timing matters

BU

- LHC High Luminosity → large number of interactions per bunch crossing, from <µ> ~40 in Run2 to <µ> ~200
- LHC-HL starts in 2029!
- Timing information for tracks is needed to maintain Run2 physics performance
- CMS targets 30-50 ps per track

Simulated event display with average pileup of 140

- Improving particle ID
- Extending CMS physics reach

- Barrel Timing Layer BTL :
 - Sensors: LYSO+SiPM
 - Inner radius: 1148 mm 40mm thick
 - Length: ± 2.6 m
 - \circ Fluence at 3000 fb⁻¹ ~1.7x10¹⁴ n_{eq}/cm²

- EndCap Timing Layer ETL :
 - Sensors: LGAD
 - \circ Radius: 315 mm < r < 1200 mm
 - z-position 3.0 m 45 mm thick
 - \circ Fluence at 3000 fb⁻¹ ~ 1.6x10¹⁵n_{ed}/cm²

BTL

Challenges:

- Timing resolution goal: 30-40 ps at the beginning of operations, <60 ps up to 3000 fb⁻¹
- Radiation hardness: $\sim 1.7 \times 10^{14} n_{eq}^{2}/cm^{2}$
- Maintenance free operation inside the tracker cold volume
- Covering ~38 m² of area

Sensor choices:

- LYSO crystals as scintillator
 - Radiation tolerance
 - Good light yield
 - Fast rise time
- Silicon Photomultipliers photo-detectors
 - Compact, fast, insensitive to magnetic fields
 - Photo-detection efficiency 20-40%
 - Also rad-hard

BTL - Design

BTL - Sensor optimization

• Sensor geometry: High aspect ratio crystal bar + 2 SiPMs

- Enhance light collection efficiency
- Minimize impact point position dependency
- Minimization of active area and power
- \circ 2 signals per charged particle, $\sqrt{2}$ resolution improvement
- Determination of track position with resolution ~mm
- Trade-off between light collection and Dark Count Rate
 - Optimal SiPM cell size found at 25 μ m →higher gain, faster rise time
 - Larger crystal thickness 3.75 mm
 →bigger energy deposit
 - Both choices increase DCR

charged particle

BTL - Sensor optimization

- Minimize SiPM DCR
 - Reduce operation temperature
 - Annealing of SiPMs
- → Additional Thermoelectric Coolers (TEC) on the SiPMs:
 - Reduce operational temperature from -35 C° (CO₂) to -45 C°
 - Allow annealing in situ during technical stops at 60 C°

BTL - FE electronics

- Radiation tolerance
- Low power dissipation < 1 W/chip
- DCR suppression DLED
- FE cards equipped with 2 TOFHiR 32 SiPM
- CC cards connects 12 FE cards and communicate with backend via VTRx

BTL -Detector layout

- 16 LYSO bars+ 32 SiPM 51x57 mm²
- 2 sensor modules per FE board
- 12 FE per CC BTL Read-out unit
- 6 BTL RU per tray
- 72 trays (36 in $\phi \times 2$ in η) 250 x 18 x 2.5 cm
- 331k readout channels, 10368 modules

• Extended effort to meet design performance completed successfully

- Optimized LYSO thickness and SiPM cell size
- Optimized SiPM DCR with thermal management
- Optimized FE to minimize DCR sensitivity till EoL
- Multiple test beam campaigns, validating the reliability of all the components

- Prototyping phase finished and moving towards production
 - LYSO pre-production on-going
 - Sensor modules assembly expected to start in Q2 of 2024
 - BTL installation will start in 2025

ETL

Challenges:

- Withstand the radiation and the particle density of CMS forward regions
- Very tight space
 - o z-envelope ~ 45mm

ETL - design

Technology of choice:

- Low Gain Avalanche Diods (LGAD):
 - Radiation hardness
 - Fast rising pulse
 - Relatively thin sensors

ETL - sensors

• LGADs sensors:

- Additional gain layer (multiplication implant) proportional to bias voltage
- Low / moderate gain ~10: low noise, fast slew-rate and fast rising pulse
- $\circ~~50\mu m$ depletion region \rightarrow thin sensor
- Junction Termination Extension (JTE) reduces electric field at perimeter of pads, resulting in no-gain inter-pad gaps. → Need to be sufficiently small for large coverage.

16x16 pixel sensor

1.3 x 1.3 mm² pixels

- LGAD sensor performances in ideal conditions (BoL)
- Intrinsic resolution ~30 ps , expected charge deposit 15-35 fC
- Uniform performance across the pads
- Good agreement between test beams and beta source data

ETL - sensors

- Several test beams performed to measure interpad gap and radiation tolerance:
 - \circ ~ Interpad gap measured to be 70/80 μm acceptable fill factor
 - To maintain performance, bias voltage need to increase with irradiation
 - \circ Sensors operates safely with bias < 11 V/µm
 - Sensors shows up to 40ps time resolution at 10 fC in EoL conditions

ETL - ETROC

Challenges of the readout electronics:

- Low gain \rightarrow low deposit charge from sensors
- Sensor resolution ~30 ps → ASIC contribution to time resolution has to be < 40ps
- Low power budget ~ 1W/chip → design dedicated low power TDC

H-Tree clock distribution

ETL - ETROC

- ETROC prototypes:
 - ETROC0: single analog channel preAmp + discriminator testing core front-end analog performance
 - ETROC1: 4x4 pixels chip, ETROC0+TDC, test beams with ETROC1 + LGAD sensor showed ~40ps time resolution per single hit
 - ETROC2: First 16x16 pixels prototype, full functionalities → First ETROC2 + 2x2 LGAD test beams happening now!

ETL - Modules

- ETL modules are made of 4 16x16 pixel LGAD sensors, bump bonded to 4 ETROCs
- Sensors are glued on AIN baseplate in thermal contact with the support disk, CO₂ cooled
- Module PCB is glued on the ETROCs
- Modules connects to multi-module readout board that sits on top
- Several sites will assemble the ETL modules currently testing production throughput

ETL - FE electronics

- Readout board based on CERNs radiation hard GBT chip-set (IpGBT, GBT-SCA) and Optical Link Module, VTRx+
- Custom power board developed at FNAL
- Extensive campaigns of system tests putting together the available prototypes
- Getting ready for TB using ETL full system

ETL - Detector Layout

- Strong effort to combine inputs from studies into a complete detector design and layout: ~8000 modules (4 sensors each) on 2 EndCaps. ~8M channels in total
- Each detector consists of 2 disks with front and back face instrumented
- Modules + front end electronics and services need to fit in very tight mechanical envelope - total detector z < 99mm

- Final prototype phase, several tests done and still ongoing:
 - LGAD sensor fully characterized, suitable commercial vendors identified
 - ETROC2 ASIC performance studies in full swing, getting ready for ETROC3 submission
 - Full system tests performed on ETROC2 wirebonded with LGADs
- Building the detector:
 - Modules assembly throughput demonstration on-going, at several assembly sites
 - Mechanics design finalized, detector integration planned

Summary and Outlook

- CMS MIP Timing Detector well advanced:
 - BTL:
 - Sensors have been optimized to meet the target performance
 - Reliability and readiness for mass production well demonstrated
 - Entered production phase modules assembly beginning 2024, tray integration will start end of 2024
 - ETL:
 - LGADs vendors identified, meeting the performance targets
 - Great progress in testing ETROC2, module assembly and system performance
 - Test beams with full system planned for early 2024
 - ETL detector will enter production phase in ~1 year
 - Assembling of the ETL disks will start in 2027

Physics motivation

35 ps BTL, 35 ps ETL							
Channel	No MTD	ETL Only	BTL Only	MTD			
bbbb	0.88	0.90	0.93	0.95			
$bb\tau\tau$	1.30	1.38	1.52	1.60			
$bb\gamma\gamma$	1.70	1.75	1.85	1.90			
Combined	2.31	2.40	2.57	2.66			

50 ps BTL, 50 ps ETL							
Channel	No MTD	ETL Only	BTL Only	MTD			
bbbb	0.88	0.90	0.93	0.95			
bb au au	1.30	1.36	1.44	1.50			
$bb\gamma\gamma$	1.70	1.72	1.78	1.80			
Combined	2.31	2.37	2.47	2.53			

70 ps BTL, 35 ps ETL							
Channel	No MTD	ETL Only	BTL Only	MTD			
bbbb	0.88	0.90	0.92	0.94			
$bb\tau\tau$	1.30	1.38	1.36	1.44			
$bb\gamma\gamma$	1.70	1.75	1.76	1.81			
Combined	2.31	2.40	2.41	2.51			

HH measurements

- improvements in all the HH channels:better lepton Ο isolation, B-tagging, etc...
- Long lived particles
 - displaced jets tagged with jet delay Ο
- improved PID

Giacomo Zecchinelli

DLED method*

- Inverted and delayed current pulse is added to the original pulse
 - Delay line is approximated by a RC net (200-1800 ps)
 - Short output pulse (< 25 ns)
 - Noise and baseline fluctuations are mitigated
- Simulation of time resolution in EoL conditions shows resolution improvement by a 3.5 factor

*A. Gola, C. Piemonte and A. Tarolli, "Analog Circuit for Timing Measurements With Large Area SiPMs Coupled to LYSO Crystals," in IEEE Transactions on Nuclear Science, vol. 60, no. 2, pp. 1296-1302, April 2013.

