Design and construction of the ATLAS ITk Strip Detector

Igor Mandić, on behalf of the ITk Strip Community

17 October 2023

Upgrade to HL-LHC

- proton energy similar as LHC: 6.8 TeV 7 TeV
- increase of luminosity (L_{peak} =7.5x10³⁴cm⁻²s⁻¹)
- aim for integrated luminosity L_{int} = 3000(4000) fb⁻¹
 - → 200 p-p collisions per bunch crossing
 - ➔ higher radiation levels

Radiation levels

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/RadiationSimulationPublicResults#Phase_II_Upgrade_Mar_2018_AN1

Radiation levels (including safety factor of 1.5) @ 4000 fb-1 : \rightarrow Pixels: TID = 10 MGy, $\phi_{eq} = 2 \cdot 10^{16} n_{eq} / cm^2$ \rightarrow Strips: TID = 660 kGy , $\phi_{eq} = 1.6 \cdot 10^{15} n_{eq} / cm^2$

ATLAS Phase II upgrade

Current ATLAS Inner Detector (ID) will be replaced with Inner Tracker (ITk)

- → not suitable for HL-LHC environment
- → radiation damage accumulated by many years of successful operation

ATLAS Inner Detector

- silicon: IBL (pixels), Pixel Detector, SCT (strips), •
- gas: Transition Radiation Tracker (TRT) ۲

New ATLAS Inner Tracker:

silicon only: **pixels** and **strips** •

of Stefan Institute ibljana, Slovenia

ATLAS Phase II upgrade

- Improvements of ITk compared to ID:
 - higher radiation tolerance
 - finer granularity
 - higher trigger rate
 - less material in the tracking volume

ATLAS Phase II upgrade

ITk strip detector:

- 4 barrel layers
- 6 strip disks in each end-cap
- coverage up to $\eta = 2.7$
 - →~ 18000 strip sensors
 - \rightarrow ~165 m² of silicon
 - \rightarrow ~ 60 million channels

z [mm]

ATLAS

Tk

6 m

ublia

Mandić, ITk Strips, Vertex 2023

ATL-PHYS-PUB-2021-024

ITk strips - barrel

Barrel:

- 4 barrel layers
- barrels are divided in 392 double sided staves
- 14 modules/stave/side
 10076 modules (senserue)
 - → 10976 modules (sensor+electronics)
- Two types of ~ 9.7 cm x 9.7 cm sensors:
 - outer 2 layers: Long Strips (LS)
 - inner 2 layers: Short Strips (SS)

• 14 modules mounted on each side of **stave**

ITk strips - endcaps

Endcaps:

- 2 endcaps
- 6 disks per endcap
- 32 petals per disk
- 6 modules per petal-side
 → 4608 modules

Petal:

- 6 sensor geometries
- R0,R1,R2 one sensor/module
- R3, R4, R5 two sensors
- strip length: 1.4 –6

ATLAS X ITK Sensor geometries

Module:

• Silicon sensors + ASICs + Power control

Hybrids, Powerboard:

- flexible printed circuits
 - \rightarrow glued on the sensor
- strips wire-bonded to front end ASIC on hybrids

Hybrids:

HCCstar

- ATLAS Binary Chip **ABCstar** (front-end, 256 channels)
- Hybrid Controller Chip (HCCstar)

Power-board:

- **DCDC** converters: transform 11 V supply to 1.5 V for ASIC
- Autonomous Monitor And Control chip (AMACstar) \rightarrow monitors currents, temperatures, voltages
- High Voltage filter and switch (HV-Mux)

Hybrid **Barrel SS** HUIN 02 **Powerboard Endcap R5** DCDC mm AMACstar 5 **ABCstar** Split modules: Sensors on the outer rings (R3,R4,R5) cannot be made from a single **HV-Mux** silicon wafer strip aNIN

HCCstar

Jožef Stefan Institute Ljubljana, Slovenia

8

- Different module flavours:
 - two for barrels: SS and LS
 - six for endcaps: R0 to R5

Long Strips barrel module (2 rows of strips):

R3 **endcap** module (4 strip rows, 2 sensors, 4 hybrids):

- High Voltage for sensor bias is connected to sensor back plane by Tape Automated Bonding (TAB) bonding
- maximum bias voltage -500 V

Support structures

- modules are mounted on light weight support structure: cores
 - barrel modules on "stave cores"
 - endcap modules on "petal cores"

Stave

Mandić, ITk Strips, Vertex 2023

Low mass support structures

Cores:

- copper on Polyimide (kapton) bus tapes is routing electrical connections for power and signals
- pipes for evaporative CO₂ cooling in highly thermal-conductive ۲ carbon-fibre structure
- → modules are glued to both sides of cores → wire-bonds from modules to bus-tapes (tab bonds for HV)

Stave Cross section

ubliana, Slovenia

Petal core exploded view

co-cured

CU

25

2

Readout and control electronics

- ABCDstar: front-end chips communicate with Hybrid Controller Chip HCCstar on each hybrid
- HCCStar: sends data at 640 Mbps to and receives clock and commands at 160 Mbps from End of Substructure board over bus tapes (e-links)

End of Substructure board (EoS):

- IpGBT (Low Power GigaBit Transceiver, 65nm CMOS ASIC) and VTRx+: fibre optic driver/receiver
 - → communicates with off detector electronics: 10 Gb/s data link (uplink), 2.56 Gb/s command link (downlink)

Powering

- one Low Voltage power supply channel per stave/petal side
- to reduce voltage drop in cables: start with 48V \rightarrow transform to 11V on PP2 \rightarrow to 1.5 V(2.5 V) on modules/EoS
- High Voltage: 4 channels per SS stave side, 2 channels (multiplexed to 4 at PP2) per LS/EC stave/petal side

Cold Noise

- High noise channels observed when testing modules at low temperatures (-40°C) \rightarrow Cold Noise
- CN seen only in barrel modules, for strips under power-board
 - → source of noise: mechanical vibrations of capacitors on power-boards
- CN not observed in endcap modules
 - ➔ different power-board circuit material and layout, curved geometry...

Solution for barrel LS modules:

- → use right glue (Eccobond F112) for module assembly
- ➔ production of LS modules started
- changing the glue doesn't fully cure the problem for **SS** modules
 - ➔ investigating: thicker glue, filling glue gaps, endcap-style power-board
 - time to find solution by summer 2024

Jožef Stefan Institute Ljubljana, Slovenia

Cold Noise

- ATLAS **TIK**
- buck converter switching at 2 MHz with air core coil used for DC-DC conversion form 11 V to 1.5 V
 - \rightarrow vibrations in capacitors because of switching
 - \rightarrow vibrations are transferred to sensor
 - ightarrow mechanism of coupling between mechanical vibrations

and electronic noise not yet understood

Vibration pattern measured on the back side of sensor

Power Board

https://indico.cern.ch/event/1255624/contributions/5445245/

Jožef Stefan Institute Ljubljana, Slovenia 10

ASICs

- all three ASICs (ABCstar, HCCstar, AMACstar) produced by Global Foundry (GF) in 130 nm technology
- chips are pre-irradiated to 5 Mrad with ⁶⁰Co to avoid TID bump
 → pre irradiation of production chips at RBI, Zagreb, Croatia

Production of ASICs going on

ASIC	Manufactured	Probed	Probing Yield	Diced	Pre irradiated
ABCStar	330000 (95%)	49%	88%	30%	3%
HCCStar	32000 (93%)	93%	97%	71%	21%
AMACStar	28000 (117%)	100%	93%	88%	27%

Sensors

- n-in-p type, float zone, AC coupled, single sided
- active thickness 300 µm •
- full depletion voltage V_{fd} ~280 V (specifications V_{fd} < 350 V)
- 8 sensor geometries:
 - 2 for the barrel, 75.5 µm strip pitch
 - 6 for the end-caps, trapezoidal, 70 to 80 μm pitch
 - one sensor per 6 inch wafer + test structures

for stereo hit reconstruction

Wafers with 8 sensor geometries

Y. Unno et al., 2023 JINST 18 T03008

<u>Sensors</u>

- production at HPK started in 2021 and will finish in 2025
- ~ 22000 sensors will be produced
 > 57% sensors delivered according to the plan
- extensive **Q**uality **C**ontrol and **Q**uality **A**ssurance procedures
- low rejection rate 2 to 3 %
 - sensors mostly fail breakdown criteria (V_{bd} > 500 V)
 - some correlation with high static charge on sensors
 - part of failed sensors can be recovered with different treatments (UV, ion blowing, baking ...)

→ more detail in talk by <u>M. Mikestikova on Thursday 15:50</u>

Full depletion voltage V_{fd} distribution

C. Klein et al., ATL-ITK-PROC-2023-002

Sensors QA

- structures sampled from batches of wafers
- irradiated up to 1.6e15 n_{eq}/cm² with:
 - neutrons at TRIGA reactor in Ljubljana
 - protons at CYRIC(KEK) (70 MeV) or Birmingham (27 MeV)
 - → <u>CSNS (70 MeV protons)</u> Dongguan, China, is being qualified
- **TID** to **660 kGy** with γ from ⁶⁰Co source in Prague
- various parameters followed (Charge Collection, V_{bd}, R_{int}, PTP...)
- few imperfect batches identified

- collected charge measured with ⁹⁰Sr on AliBaVa system
- acceptance: Charge > 6350 electrons at sensor bias = 500 V

Tests structures cut from wafer

Test chip

ATLAS

Core production

- stave and petal cores in pre-production stage
- Barrel:
 - some delays with start of bus tape production because of problems with nickel gold plating, ..
 - solutions searched, recent results encouraging
 - expect to start production soon
- Endcap:
 - production of bus tapes ongoing
 - 16 pre-production cores finished, good results
 - production of cores will start soon

Robot testing of petal bus tape

ATLAS **TK**

Module production

- starting production for barrel LS and endcap modules at module production sites:
 - precision work:
 - parts need to be positioned within 10 μm
 - glue thickness controlled with 10 μm accuracy to ensure good thermal contact etc..
 - wire-bonding
- modules are mounted ("loaded") to stave and petal cores at loading sites:
 - dispensing the glue
 - high precision module positioning
 - wire-bonding to bus tapes
- staves and petals will be inserted into barrels and endcaps at CERN, Nikhef and DESY

See poster by L. Franconi

ef Stefan Institute

bliana, Slovenia

https://agenda.infn.it/event/35597/contributions/211792/

Stave loading – mounting modules on cores

Petal loading system

Global structures

- carbon fibre structures holding staves and petals
- first endcap structure finished, second in production
- 4 barrel cylinder in production
 - outer barrel cylinder (L3) finished, being equipped with mounting brackets in Oxford

Endcap structure

Barrel cylinder with mounting brackets

Integration

Preparing for integration:

- staves inserted to barrel at CERN
- petals inserted to endcap at DESY and Nikhef
- barrel and endcaps will be integrated into ITk at CERN

Barrel (and later ITk) integration room at CERN

Stave insertion tool

Petal insertion tool

Jožef Stefan Institute Ljubljana, Slovenia ATLAS

System Tests

• Barrel (at CERN)

- can host up to 8 staves
- tests made with 4 preproduction stave
- demonstrated parallel readout of multiple staves at 1 MHz
- first tests with CO₂ cooling system

• End-cap (at DESY):

- can host up to 12 petals
- electrical services and cooling infrastructure ready
- powering chain installed and tested
- installation of first petal in progress

Barrel System Test at CERN

End-cap System Test at DESY

Summary

ITk Strip Detector will provide excellent particle tracking in the extremely demanding HL-LHC environment!

- components in pre-production (final confirmation of the design before production):
 - → staves, petals, services, power supplies
- components in production:
 - → sensors, ASICs, modules, global structures
- building of staves and petals should start soon
- installation of first staves and petals in the global structures is starting in 2024 and should finish by the end of 2026
- barrel and both endcaps should be ready to integrate with pixel detector in 2027
- complete ITk (Strips and Pixels) installation in ATLAS planned for 2028
 - → many challenges to overcome
 - → on track for installation of the integrated ITk system in 2028

