

Operational experience on the CMS silicon strip detector

Ivan Shvetsov on behalf of the CMS collaboration

CMS Strip Tracker

- 9.3 million strips, 198 m² active silicon area, 15148 modules
- 5 m long, 2.5 m diameter
- 10 layers in the barrel region, 4 inner barrel layers (TIB) and 6 outer barrel layers (TOB)
- 3 inner disks (TID) and 9 endcap disks (TEC)
- p-in-n sensors

CMS Strip Tracker

- 9.3 million strips, 198 m² active silicon area, 15148 modules
- 5 m long, 2.5 m diameter
- 10 layers in the barrel region, 4 inner barrel layers (TIB) and 6 outer barrel layers (TOB)
- 3 inner disks (TID) and 9 endcap disks (TEC)
- 320 µm Si in inner layers (TIB, TID, TEC ring 1-4)
- 500 μm Si in outer layers (TOB, TEC ring 5-7)

- 9.3 million strips, 198 m² active silicon area, 15148 modules
- 5 m long, 2.5 m diameter
- 10 layers in the barrel region, 4 inner barrel layers (TIB) and 6 outer barrel layers (TOB)
- 3 inner disks (TID) and 9 endcap disks (TEC)
- Double sided modules (2 modules with stereo angle of 100 mrad) in 4 layers (3 rings) in barrel (endcap)

Modules

Longer strips in outer layers/rings

• Longer strips \rightarrow thicker sensor to keep high signal to noise

Tracker Analog readout

- Tracker readout is analog (signal height information)
- APV25 chip can be read out in 2 modes:
 - peak mode (single sample from shaper)
 - deconvolution mode (3 sample weighted average, shorter pulse)
- Signal from APV25 is converted to optical on the analog-opto-Hybrid (AOH):
 - linear laser drivers
 - edge emitting photodiodes
- Laser driver has four gain stages: equalize readout
- gain and compensate the radiation damage

1 BX = 25 ns

Detector status in LHC Run 2

Fraction of active channels about 96% is stable over years

Components excluded from data-taking: 4 control rings, power groups, individually switched off modules

Silicon temperature

- 2 cooling loops were closed in the beginning of 2022
- Detector is currently operated at -22°C (since June 2023)
- Grey regions = modules excluded from data-taking
- Purple regions = modules with DCU data missing

Change of operational temperature

- Operational temperature change from -20 °C to -22 °C in 2023
- Driven by increase of leakage current in modules with degraded cooling contact in TIB L1

Evolution of "bad" components during run 3

Fraction of components marked bad for reconstruction

- Fraction of active channels about 96% is stable over years
- Components excluded from data-taking: 4 control rings, power groups, individually switched off modules
- The drop in TEC is related to recovery of uncooled modules

Signal to noise performance

high signal to noise

Signal to noise performance

- Expected decrease of signal to noise with irradiation
- Signal to noise is not expected be an issue at the end of life (~ 500 fb⁻¹)

Signal to noise performance

- Expected decrease of signal to noise with integrated luminosity
- Signal to noise is not expected be an issue at the end of life (~ 500 fb⁻¹)

Hit efficiency

- Hit efficiency > 98 %
- Linear as a function of instantaneous luminosity
- Measured with standard fill with luminosity below 1.8e34 Hz/cm² and high luminosity fill with luminosity over 1.8e34 Hz/cm²

Single hit resolution

Pair method: hit resolution is computed by using hits from overlapping modules in the same layer

Radiation effects

Radiation effects

- About 266 fb⁻¹ delivered by the end of 2023
- Regular measurement of radiation related quantities done
- Leakage current (I_{leak}) is measured using power supply and with detector control units on the module level
- Full depletion voltage:
 - bias scan on full detector (twice per year)
 - once per month on representative power groups JINST 2008 paper

Leakage current

- Modules in uncooled regions have quite high leakage current, with few modules in TIB L1 exceeding 2 mA (power supply limit of 12 mA for group of 6 modules)
- Most of the tracker is far away from reaching power supply limit

empty regions correspond to problem with slow local control readout

Karlsruhe Institute of Technology

Evolution of leakage current in TIB layer 1

The leakage current is well below 1 mA

Thermal runaways

- Few thermal runaways were observed in 2023
- Two ways to attack the problem:
 - switching off half of stereo modules
 - reducing bias from 300 V to 200 V

grouping of modules in double sided layer

Number of expected thermal runaways

Expected modules with thermal runaway by the end of Run 3 (400 fb⁻¹)

- Changing temperature from -20°C to -25°C reduces the number of thermal runaways by a factor of 2
- Temperature eventually will be lowered to -25 °C
- Given that leak of cooling plants is strongly temperature dependent, this will be postponed if possible

Full depletion voltage

- The prediction of the full depletion voltage is presented for the lifetime of the detector
- Inner layers have passed type inversion:
 - measurements not very sensitive for voltages close to inversion point
 - TIB L1 is predicted to be around 100 V

Full depletion voltage

- Summary of expected full depletion voltage by the end of Run 3 compared to initial value from lab measurements
- TIB L1 will approach 300 V
- Currently majority of the detector is operated at 300V
- 600 V is the limit of the power system

Laser drivers and photodiodes are aging due to irradiation, causing:

from control Hybrid (I2C)

Reset

- threshold increase
- Ioss of efficiency

- Laser drivers and photodiodes are aging due to irradiation causing:
 - threshold increase
 - loss of efficiency

normally working laser driver

- Laser drivers and photodiodes are aging due to irradiation causing:
 - threshold increase
 - loss of efficiency

- Laser drivers and photodiodes are aging due to irradiation causing:
 - threshold increase
 - loss of efficiency

loss of efficiency

AOH performance with irradiation

- Absolute threshold increase in mA
- Average threshold current at the time of reference runs around 3 mA
- Maximum allowable threshold current 22.5 mA
- Increase during high luminosity periods and annealing during off-beam periods
- Decrease after changing coolant temperature from -15 °C to -20 °C
- Clear dependence on radius

Inner Barrel

Summary and outlook

- CMS Strips tracker performing well after almost 15 years of operation
- No major degradation of detector components in the last years
- Signal to noise, hit efficiency and hit resolution are very good
- Operation temperature changed from -20 °C to -22 °C in 2023 helped to decrease leakage currents in uncooled regions and regions with degraded cooling
- Radiation effects are increasing in line with delivered luminosity
 - Monitoring various effects (leakage current, full depletion voltage)
 - TIB L1 passed the inversion point and has a full depletion voltage around 100 V now
- Strip Tracker is expected to continue delivering high quality tracks to CMS until end of its life at the start of LS3

BACKUP SLIDES

30 16/10/2023 Ivan Shvetsov - Operational experience on current silicon strip detector

Sensors types

Module	Pitch	Strip length	S/N	S/N
type	[µm]	[mm]	Peak mode	Dec. mode
IB1	80	116.9	25.8 ± 1.3	18.3 ± 0.5
IB2	120	116.9	29.5 ± 1.4	20.3 ± 0.6
OB1	122	183.2	36	25
OB2	183	183.2	38	27
W1TEC	81–112	85.2	33.1 ± 0.7	21.9 ± 0.6
W2	113–143	88.2	31.7 ± 0.5	20.7 ± 0.4
W3	123–158	110.7	29.2 ± 0.6	20.0 ± 0.4
W4	113–139	115.2	28.6 ± 0.5	19.2 ± 0.3
W5	126–156	144.4	42.2 ± 1.1	24.1 ± 1.1
W6	163–205	181.0	37.8 ± 0.6	23.0 ± 0.4
W7	140–172	201.8	35.5 ± 1.0	20.3 ± 1.1

Simulations

- Simulations are done based
 - temperature measurements per module
 - particle flux simulations with FLUKA

$$I(\Phi, t, T) = I_0 + \alpha(t, T)\Phi V$$

$$\alpha(t,T) = \alpha_0(T) + \alpha_I \exp\left(\frac{-t}{\tau_I(T)}\right) - \beta \ln \frac{t}{t_0}$$

Intial Vfd

Christian Barth thesis

Initial temperature map

JINST 2008 paper

Average leakage current

Sensors

Readout scheme

HIP probability

