

 $\frac{\sqrt{2023}}{\sqrt{2023}}$ The 32nd International Workshop on Vertex Detectors

Sestri Levante (GE, IT), 16-20 October 2023

The Silicon Vertex Detector of the Belle II Experiment

Jarek Wiechczyński (for the Belle II SVD Collaboration)

Outline

- Belle II experiment & vertex detector
- Silicon Vertex Detector (SVD) overview
- SVD operation status and performance
- High luminosity perspective & software developments
- Long shutdown 1 activities
- Summary

SuperKEKB accelerator and Belle II detector

 Asymmetric e⁺e⁻ collider operating at Y(4S) resonance energy in the CM frame

 \rightarrow clean source of *B* mesons from $Y(4S) \rightarrow B\overline{B}$ process

 instantaneous luminosity achieved: 4.7 x 10³⁴ cm⁻²s⁻¹ (world record!)

Goal: 6 x 10³⁵ cm⁻²s⁻¹

- Excellent vertexing and good hermeticity
- Integrated luminosity achieved so far: 424 fb⁻¹ Goal: 50 ab⁻¹

Vertex Detector (VXD) of Belle II

- SVD 4 layer structure (layers 3-6)
- Extrapolation of the tracks to PXD
- Low momentum tracking
- Help with particle identification using dE/dx

- Excellent vertexing and good hermeticity
- Integrated luminosity achieved so far: 424 fb⁻¹ Goal: 50 ab⁻¹

SVD structure

41 mm

Front-end electronics

Central DSSD sensors connected to front-end APV25 ASICs via flex circuits

> → "origami scheme"

Analog signal

By default:

6 subsequent samples readout

Alternative for high luminosity runs:

- > 3/6 mixed acquisition mode
 - → allows to reduce data size due to enhanced background occupancy
 - → 3 or 6 sample mode depends on the timing precision of the trigger for particular event

Frontend ASIC APV25:

- 128 channels per chip
- 50 ns shaping time
- Radiation hardness > 100 Mrad
- Power consumption: 0.4 W/chip
- Multi-peak mode at 32 MHz

SVD operation & status

Timeline

March 2019: Start of data taking...

- Very smooth performance of the SVD without major problems
- Total number of masked strips < 1%
- Stable environment, calibration constants evolution consistent with expectation
- Radiation damage effects are well under control
- Excellent detector performance:
 - \rightarrow efficiency, signal-to-noise ratio (next slides)

July 2022:

Long Shutdown 1 (LS1): maintenance & improvement of the SuperKEKB and the detector

 \rightarrow VXD upgrade \rightarrow new **PXD**, the same **SVD**

Plans for resuming the accelerator operation in **December 2023**

SVD efficiency

8

Cluster charge &

Signal-to-Noise Ratio (SNR)

Collected charge depends on the incident angle of a track

- Cluster charge similar in all sensors (if normalised to the track's length)
- 10-30% signal loss for v/N side due to larger pitch and floating strip

- Larger noise for u/P side due to longer strip length and larger inter-strip capacitance
- Small changes in SNR due to radiation damage

Good stability of both cluster charge and SNR during 2020 – 2022 data taking period

Position resolution

- Based on the residual of the cluster position with respect to the intercept of the unbiased track extrapolation

 → utilization of di-muon (e⁺ e⁻ → µ⁺ µ⁻) sample
- Good and stable resolution during whole operation period (comparing data samples taken in 2020 and 2022)

$$\sigma_{x} = \sqrt{\left\langle (\Delta x_{i})^{2} - (\sigma_{x,i}^{\text{trk}})^{2} \right\rangle}$$

$$\sigma_{x,i}^{\text{trk}} = \text{unbiased track position error}$$

Hit time resolution

Hit time resolution: measured w.r.t. event time of the collision, provided by Central Drift Chamber (CDC) \rightarrow excelent result of < 3 ns

Event-time: computed using all the clusters associated to selected tracks in the event

Similar resolution (~ 1 ns) but 2000 times faster computation time w.r.t. the one computed with CDC!!!

This feature speeds-up the High Level Trigger (HLT) reconstruction

 \rightarrow important in the higher luminosity

Radiation effects

- Dose on SVD is constantly monitored using diamond sensors and hit occupancy
- Integrated radiation damage can deteriorate sensor performance:

- Linear dependence on the dose (equivalent neutron fluence)
- Negligible contribution to the noise due to short APV25 shaping time & still small current
- Deterioration in SNR (<10) after 6 Mrad → leakage current increases strip noise</p>
- Behaviour consistent with other experiments (BaBar) with similar detector/conditions

- Noise increase <20% (30%) for N (P) side</p>
- Dominated by the inter-strip capacitance
- Expected to be saturated

Radiation effects: effect on depletion voltage

- Large radiation damage can cause a change in V_{FD}
- Irradiation campaign of SVD sensors with 90 MeV electron beam (ELPH, Tohoku University, July 2022)
 - \rightarrow Checking effects of high radiation on the sensors up to 10 Mrad (eqivalent neutron fluence: 3 × 10¹³ n_{en}/cm²)
 - → **Type inversion** confirmed at ~ 2 Mrad (eqivalent neutron fluence ~ $6 \times 10^{12} n_{eq}/cm^2$)
 - $\rightarrow\,$ SVD sensors still expected to work well after type inversion
- No change of depletion voltage observed so far
- We estimate radiation levels of 0.35 Mrad/yr ($8 \times 10^{11} n_{eq}/cm^2$ /yr) extrapolating background to the nominal luminosity

Beam Background & SVD Hit Occupancy

SVD occupancy increases with beam background

 \rightarrow may lead to the deterioration of tracking performance

So far, average hit occupancy is ${\sim}0.5\%$ for Layer 3 and well under control!

Background extrapolation at nominal luminosity of $L = 6 \times 10^{35}$ cm⁻² s⁻¹ based on detailed simulation including various sources of background (applying data/MC scale factors)

- \rightarrow expected L3 occupancy very close to the limit of 4.7% (that ensures good tracking performance)
- However: large uncertainty due to future machine evolution with possible interaction region re-design
 - \rightarrow conservative scenario increases L3 occupancy prediction up to 8.7%

This motivates us to:

- constant *development in SVD reconstruction software* to account for future higher occupancy

- vertex detector upgrade as our safety factor might still be small & matching possible new interaction region

SVD hit-time selections

Signal hits come from triggered collision

 SVD acquisition window (~100 ns) is wide with respect to the SuperKEKB bunch spacing (~6 ns).

Selection based on SVD hit-time rejects off-time **background hits -** beam-induced background, background from the other bunches

Hit-time-based selection to remove off-time clusters:

- \rightarrow time difference between **u** and **v** cluster: $|t_u t_v| < 20$ ns
- \rightarrow cut on absolute cluster time value: $|t_{uv}| < 50$ ns
- This rejects the majority of the background, keeping above 99% of signal!

Based on SVD time selection the SVD occupancy limit for Layer 3 can be set at 4.7%

Further background rejection methods

1) SVD Grouping

Event-by-event classification of clusters into groups based on their time:

- Clusters belonging to tracks from the same collisions – collected in the same group!
- Other clusters are probably from the different collisions or beam background
 - → reduces the *fake rate* by 16% for the *high-background* scenario

- 2) Selection on track-time to remove off-time tracks
- → further *fake rate* reduction by factor of 1.5 for the *high-background* scenario

These features (1 & 2) allow to increase SVD occupancy limit for L3 from 4.7% to ~6%

3) Possible re-design of the interaction region + small safety margin (due to large uncertainty on expected background)

- \rightarrow motivation for the vertex detector upgrade
 - \rightarrow technology assessment ongoing

→ see Wednesday's talk **"The DMAPS Upgrade of the Belle II Vertex Detector"** by Danwei Xu

VXD re-installation during LS1

- Upgrade VXD with a **new PXD** (with the same SVD)
- → 2nd layer of PXD now covers the full azimuthal angle (only 1/6 for the old PXD)

• Intense hardware activities on the SVD for the VXD uninstallation and reinstallation

10th May

16th-17th May

VXD Re-installation in LS1

20-21 June

28 July

SVD detachment & reattachment successfully done!

- VXD commissioning (12 September 1 October)
 - > To confirm the PXD and SVD performance
 - To check impact of possible temperature increase on the sensor current (increased PXD power consumption)
 - cosmic run with no magnetic field (from 21 Sept.)

+ still excellent efficiency for all sensors!

18

Summary

SVD has successfully operated since March 2019

- Very smooth performance without major problems
- Good vertexing quality confirmed by the physics measurment (e.g. liftime analysis $D^{0/+}$, D_s , B^0 , Ω_c^0 , Λ_c)
 - https://confluence.desy.de/display/Bl/Journal+Publications
- Some radiation damage effects observed no impact on the performance so far

Performance expectation at the target luminosity

- Radiation dose is still within safety margin
- Extrapolated background level indicate that the occupancy in the SVD can exceed the current limit !
- Several SVD software improvements for a better performance in high background conditions
 → importance of the SVD hit time exploit
- VXD upgrade under discussion ⇒ to be more robust against high background and matching possible new interaction region

VXD reinstallation at Belle II with complete PXD2 and current SVD during LS1

- Successfull commissioning with cosmic data
- Plan to resume beam operation in December 2023

SVD technical paper: *K. Adamczyk et al 2022 JINST 17 P11042*