Status of the LHCb Vertex Locator

Kurt Rinnert on behalf the LHCb VELO Group

The 32nd International Workshop on Vertex Detectors 16.10.2023

VELO Vacuum Tank

.

-

....

VELO Schematic

The second secon

VELO Module

VELO Module

- 4 Sensors
 - 200*µm* thick
 - 768 × 256 pixels, 55 × 55μm
- 12 VeloPix ASICs
 - based on TimePix 3
 - 256 × 256 pixels
 - data driven readout
 - up to 900 Mhits/s
 - 200*µm* thick
- Microchannel Cooling
 - 500 μm substrate
 - $200 \times 120 \mu m$ channels
 - sensor temperature $-25^{\circ}C$

Ambitious low material design & cooling solution.

Schematic Side View

Microchannels in X-ray

Commissioning

- Calibration Procedures
 - equalisation
 - time alignment
- Configuration
 - per pixel mask & trim
 - readout chain electronics
 - services LV, HV
- FPGA Firmware Development
- Monitoring
 - IV scans, radiation damage
 - data quality

Achieve stable operations & high data quality.

Calibration: Equalisation

- Th_{local} = trim + Th_{global}
- global threshold (*Th*_{global}) per ASIC
- trim defined per pixel (4 bits, 0 15)

Achieve uniform response across pixels.

Calibration: Equalisation

- scan noise over *Th_{global}* for *trim*⁰ and *trim*¹⁵
- analyse result to find optimum

Lengthy procedure (~ 30 min), further optimisation by moving scan to FPGA.

1. coarse alignment, synchronise with the LHC clock

Achieve synchronised timing across ASICs.

1. coarse alignment, synchronise with the LHC clock

Achieve synchronised timing across ASICs.

2. fine alignment, put low and high amplitude signals at the same clock count

Achieve synchronised timing across ASICs.

2. fine alignment, put low and high amplitude signals at the same clock count

Achieve synchronised timing across ASICs.

3. tune the various phases/delays of the electronics

Time alignment procedure is in place.

Front End Configuration

- The front end has many components
 - VeloPix ASICs
 - GBTx chips
 - OPB boards
- One ASIC alone has > 300 parameter data points
- WinCC configuration code has to be robust and scalable
- Calibration files have to be well managed
- Errors must be recovered smoothly & automatically (SEU's)

order matters

The calibration & control has been streamlined, channel efficiency is at 99.6%.

Radiation Damage: Expectation

Expected irradiation depend on distance to interaction point.

Radiation Damage: IV Curves

Measured irradiation varies for different sensors.

Radiation Damage: Current vs. Fluence

The radiation damage is consistent across all modules.

RF-Foil Incident

- Multiple equipement failures in the vacuum protection system resulted in pumping action on the primary volume...
- ...leading to too high differential pressure
- The RF-foil sustained permanent plastic damage
- The VELO modules have not been damaged
- Deformation assessed with tomography

The VELO could not be safely closed after the incident. The foil will be replaced in 2024.

Conclusion

- Robust calibration & configuration procedures have been established.
- Channel efficiency is at 99.6%.
- The VELO is in stable operations and well monitored.
- The damaged RF foil will be replaced.

We are looking forward to stable operations under nominal conditions.

reference: LHCb VELO Upgrade Technical Design Report

reference: Microchannel cooling for the LHCb VELO Upgrade I

acknowledgement: all drawings credit Alice Biolchini