

Operation and Performance of the Upgraded ALICE Inner Tracking System

Andrea Sofia Triolo^{1,2}

for the ALICE collaboration

VERTEX 2023 - 16th October 2023

¹ CERN ² University of Messina

Introduction: The ITS2

- ITS upgraded to ITS2 during LHC Long Shutdown 2 and installed in 2021.
- 7 layers of MAPS chips ALPIDE

3 <u>Inner Barrel</u> (**IB**) layers:

- Layers: 0,1,2
- Number of staves: 48 (12+16+20)
- Material budget: 0.36% X₀/layer

4 Outer Barrel (OB) layers:

- Middle Layers: 3,4
 - Number of staves: **54** (24+30)
- Outer Layers: 5,6
 - Number of staves: 90 (42+48)
- Material budget: 1.1% X₀/layer

192 staves 24120 chips 12.5 Giga pixels 10 m² active area

Largest pixel detector in High-Energy Physics

Andrea Sofia Triolo

• Monolithic Active Pixel Sensors (MAPS) implemented using the 180 nm CMOS technology of TowerJazz.

- Readout of pixel hit data based on the **Priority Encoder**
- Pixel size ~ 27 x 29 μm²
- Spatial resolution ($r\phi$, z): **5x5 \mum²**

- **Deep p-well** \rightarrow Full CMOS circuitry within active area
- High resistivity (1-6 kΩcm) p-type epitaxial layer (25 µm) on p-type substrate
- Small n-well diode (Ø = 2µm), ~100 times smaller than pixel
 → low capacitance ~fF
- Reverse bias voltage to substrate: -6 V < V_{BB} < 0 V
- \rightarrow increase the depletion volume around the n-well collection diode

Andrea Sofia Triolo

Pixel signal amplified and digitized at pixel level:

- Sensing diode
- Pulse injection capacitor
- Front-end amplifying and shaping stage
 - Always active with power consumption
 7 mW/cm²
- Discriminator → binary readout
- Digital section
 - 3 hit storage register (Multi Event Buffer)
 - Pixel masking register
 - Pulsing logic
- Total chip power consumption < 47 mW/cm²

Data readout architecture

ITS2 readout

- ITS configuration (chips + Readout Units) and calibration managed by the **ITS Detector Control System (6 Worker Nodes)**
- 13 ITS First Level Processors (FLPs)
 - Online data quality control tasks: hit occupancy and front-end electronics diagnostics
- 340 Event Processing Nodes (EPN from ALICE farm)
 - Online quality control tasks: reconstructed ITS2 tracks, clusters and decoding errors
- O2: ALICE computing framework for Run 3

- Operated in continuous integration
 - Long strobe window (1/trigger frequency)
 - Minimal gap between each strobe
- Possibility to run in triggered mode:
 - Trigger from an external interaction trigger
 - Short strobe window

Andrea Sofia Triolo

- Recorded luminosity so far (pp collisions)~28 pb⁻¹
- Nominal ITS framing rate (pp): 202 kHz
- ALICE standard interaction rate (pp): 500 kHz
- Instantaneous luminosity: ~10³¹ cm⁻²s⁻¹
- ITS2 successfully tested up to 4 MHz pp interaction rate (~50 GB/s data rate)
- ITS fully operational
 - Except for 0.4% pixel excluded in the whole detector (94 chips dead/excluded, 970k dead pixels, 500k noisy pixels)
- September 2023: Pb-Pb collisions ongoing
 - Interaction rate up to 45 kHz
 - Default Framing rate 67 kHz
 - ~ 20 GB/s data rate
 - Machine rump up ongoing

- ITS tracking:
 - Online tracking task for quick data QA
 - Good quality of the angular distribution of the tracks

 Online physics performance from QC through ∧ and K_s⁰ invariant mass peaks
 ITS standalone tracks

- Impact parameter resolution measured with Run 3 pp data:
 - Global tracks with at least 1 hit in Inner Barrel (Run 3)
 - Global tracks with at least 1 hit in the two innermost ITS1 layers (Run 2)
- 2.5x improvement at $p_{T} = 500 \text{ MeV}/c$ with respect to Run 2
- ~20% discrepancy with MC could be related to a mismatch of sensor response in simulation and residual misalignments in data
 - Resolution and alignment checks ongoing

Andrea Sofia Triolo

Performance results in Run 3 - Physics results in Run 3 pp data

 First measurements of charm mesons and baryon production with LHC Run 3 data from pp collisions at √s = 13.6 TeV

Andrea Sofia Triolo

General calibration operations:

- Inject charge into single pixels
- Vary scan parameter and repeat
- Measure **response** (hits per injection) as a function of the scan parameter
- \bullet Fit response vs scan parameter with error function to extract 50%-point and σ

Calibration scan	Scan duration	How often
Threshold scan (short)	10 min	1/day
Threshold scan (full)	1h30 min	If needed
Threshold tuning	10 min	1/year
Noise calibration	10-30 min	If needed

Other scans available for detector studies.

ITS2 calibration procedure

Andrea Sofia Triolo

Threshold tuning:

- •Goal: Set the operation point of the detector
- •Threshold influenced by the setting of 2 DACs: VCASN and ITHR
- •2 different scans: VCASN + ITHR tuning (chip level):
 - 50 charge injections repeated for 50 DAC settings
 - Inject fixed charge corresponding to desired threshold (~100 e⁻)
 - Tuned DAC values = inflection point of **S-curve**
- •~1% of pixels per chip are scanned

Threshold_scan:

Goal: Measure the average threshold per chip
50 charge injections repeated for 50 charge values
Pixel threshold = inflection point of S-curve
Chip threshold = mean of pixel thresholds
Scan performed at every beam dump to monitor the calibration
Data stored for monitoring of detector stability over time
~2% of pixels per chip are scanned (daily threshold verification)

ITS Calibration results: Threshold tuning and calibration

- Threshold tuned to 100 e⁻ in December 2022
 - \rightarrow stable after months of operations
 - \rightarrow not affected by radiation
- Minor fluctuations due to supply voltage optimizations
 → ITS2 calibration very stable

Andrea Sofia Triolo

ITS Calibration: Noise calibration

Noise calibration:

currently set

Cosmic Run

Percentage of noisy pixels per stave in ITS2 - Cosmic run 543014 - ITS2 framing 67 kHz - Recorded readout frames (ROF): 27.5 × 10⁶ - Stave average thresholds: 100 e

ALI-PERF-558339

DAC scan:

- Goal: Monitor on-chip DACs output
- Outputs measured through on-chip ADC
- 14 DAC channels: 9 voltage DACs and 5 current DACs
- Linearity between Digital Input and Analog Output

Andrea Sofia Triolo

<u>V_{RESETD} scan</u>:

- Goal: Monitor the **optimal operational range** of the chips
- Influence of leakage current and reset voltage of the pixel charge collecting ٠ node
- Influence of **radiation** outside operational range
 - Ordering of layers based on accumulated radiation 0
- ٠
- 2D scan: Threshold scan for each V_{RESETD} selected
 Threshold scan of 1 row of pixels per chip every 5 DACs setting
- Same setting for all the chips: 147 DAC Units \rightarrow 100 e⁻ ٠

Radiation tolerance:

- Scrubbing: DCS regularly performs single scrubbing cycles controlled by software on the Readout Units
- SEU in ALPIDE chips: peripheral logic is SEU hardened, DCS procedure implemented to periodically rewrite pixel masks
- Latch-up: not observed

Operations during the run:

- Voltage check and correction: each time the output voltage is modified, in case of errors, an automatic correction of the Power Unit output voltage is done
- Voltage drop correction: automatic correction of the voltage drop on staves changing state due to extra current at the start of trigger
- High-speed links into error \rightarrow Lanes NOK of faulty
 - \rightarrow Stave Auto-Recovery triggered:
 - Level 1 (automatic): Reconfigure RU only (sufficient in most cases)
 - Level 2 (automatic): Reconfigure chips and RU
 - Level 3 (manual): Powercycle chips, then reconfigure chips and RU

4-hour run without auto-recovery:

6-hour run with auto-recovery:

- Proof of concept of the Time Over Threshold (TOT) measurement with MAPS detectors
- \bullet Normal operating conditions \rightarrow pulses clipped
- ToT measurement \rightarrow clipping removed: linear dependence between the charge and the length of the pulse

Goal: extract **PID** information from ITS2 with the charge obtained after calibration

- Dedicated ITS run (IB only) \rightarrow **ITS2 Color run**:
 - $_{\circ}$ Signal clipping removed from each chip \rightarrow signal present in multiple subsequent events
 - ~ ~ 900 Hz pp interaction rate \rightarrow fit into bandwidth
 - \circ **2.2 MHz** framing rate \rightarrow oversampling ALPIDE response

• Next: extract time over threshold to measure the charge released on each pixel

- The ALICE Experiment has replaced its Inner Tracking System with a 7-layer pixel-only tracker made out of more than 24000 monolithic active pixel sensor chips (ALPIDE) during the Long Shutdown 2.
- Largest successfully operating pixel-based detector in high-energy physics.
- A regular monitoring of the calibration of the detector is performed to ensure stable operation and high data quality. Results show excellent stability of threshold and noise over time.
- Studies performed during Run 3 show an improvement in the impact parameter resolution with respect to Run 2 and an excellent quality of the ITS2 tracking.

Future ITS Upgrade:

- ITS3: next ALICE upgrade for the Inner Tracking System F. Krizek Tue 17:25
- Recent results from MAPS prototypes for ITS3 A. Villani Wed 11:30

Thanks for your attention!

Backup

- Nominal ITS framing rate: 1 kHz
- ALICE standard interaction rate (pp): 100 kHz
- ALICE standard interaction rate (Pb-Pb): 8 kHz

• Recurring threshold scans are important to evaluate if a new calibration is needed

ITS Calibration results: Threshold calibration - before and after tuning

- $_{\circ}$ $\,$ First layer closer to the Interaction point: 3.9 cm \rightarrow 2.2 cm
- Increased readout rate
 - \circ 1kHz \rightarrow 100 kHz Pb-Pb and 200 kHz pp
 - More granularity and smaller pixel size wrt old SDD

VERTEX 2023 - 16th October 2023

OB

0.5 (rad)

0.1

0.3

- Detector commissioning in the lab
 - June 2019 December 2020 \rightarrow Full detector commissioning in the lab
 - $_{\circ}$ 24/7 shifts \rightarrow monitor + cosmic data taking + calibration runs
 - Fake Hit Rate ~ 10⁻¹⁰ hit/pixel/event
 - Detector efficiency >99%
 - Stable chip threshold over time
 - Cosmic tracks successfully reconstructed

- Installation and commissioning in the ALICE cavern
 - $_{\circ}$ January 2021 \rightarrow Services installation
 - March 2021 \rightarrow OB installed
 - May 2021 \rightarrow IB installed
 - $_{\circ}$ July 2021 \rightarrow start of ALICE global commissioning with central shifts
 - October 2021 \rightarrow first pilot collision: pp \sqrt{s} = 900 GeV
 - 5th July 2022 \rightarrow start of Run 3: first pp collision at \sqrt{s} = 13.6 TeV
 - 18 November 2022 \rightarrow first Pb-Pb collisions at $\sqrt{s_{_{
 m NN}}}$ = 5.36 TeV

Andrea Sofia Triolo

•All the analog signals required by the frontends are generated by a set of on-chip 8 bit DACs.

•Analog monitoring pads are available to monitor the outputs of the internal DACs.

Internal voltage DAC **ADC global schematic** • The analog section of the periphery Internal current DAC also contains a 10 bits resolution ADC Bandgap voltage to monitor quasi-static Input scaling Power supplies internal signals Discriminator Grounds -> \land Sign Switches Temperature sensor ADC internal DAC Voltage DAC: ex. VCASN Current DAC: ex. ITHR Digital ramp Power ረ እ Input selection Sign selection + DAC Trimming 0x613 To DAC settings 0x0610 ... **Threshold regulation** (DACMONI and $\langle \rangle$ 0x627 DACMONV control)

(b) Continuous mode