



#### Operation and performance of the current CMS Pixel Detector

Grace Haza on behalf of the CMS collaboration VERTEX 2023

16 October 2023

### Tracking detectors of CMS



Pixel tracker

Barrel Pixels and Forward Pixels

Strip tracker

➡ Tracker Inner Barrel, Tracker Inner Disk, Tracker Outer Barrel, Tracker Endcap

### **Pixel detector**

#### Barrel pixels (BPix)

- 4 layers
- 1184 total modules

#### Forward pixels (FPix)

- 3 disks \* 2 rings on each end
- 672 total modules



- Pixel Phase 1 installed winter 2016/2017
- 4 hit coverage up to  $|\eta| < 3$

# Module design



#### Signal and power cables

#### Token bit manager (TBM) chip

- Receives clock, level 1 trigger accept, configuration data
- Orchestrates readout
- 2 TBM/module in layer 1

#### Silicon sensor

- (150x100) µm<sup>2</sup>
- 280 µm n-in-n

#### Read out chips

#### PSI46dig

- Digital readout
- Double column drain
- > 90% efficiency up to 200MHz/cm<sup>2</sup> hit rate

#### PROC600

- Specialized for layer 1
- Dynamic cluster drain
- > 90% efficiency up to 600MHz/cm<sup>2</sup> hit rate

#### Base strip

### **Detector with service cylinder**



#### Modules

Portcards with delay chips

DCDC converters



# **Beginning of Run 3**

- Pixels refurbished and reinstalled in June 2021
- **Completely new layer 1** has significant improvements
  - ➡Readout chip decreased dynamic inefficiency and reduced crosstalk
  - ➡New TBM with additional delay option
  - ➡New high density interconnect for more robust HV operation
- Some layer 2 modules replaced
- New DCDC converters
- Improved FPix cooling connections
- ➡Excellent performance in start of Run 3 in 2022



### LHC operation in 2023



- April 2023: Stable beams @ 900 GeV, then 13.6 TeV
- July 2023: LHC incident
- September 2023: LHC recovered and began heavy ion data-taking

#### **Active detector fraction**





Active fraction at beginning of June 2023 → 98.4 % of Barrel Pixels

➡ 97.9 % of Forward Pixels

Disk #

### Hit efficiency



- Hit efficiency affected by gain calibration, HV setting, and annealing during technical stops
- ➡ High hit efficiencies for all layers and disks

#### Resolution



Great position resolution

- Performance consistent with expected evolution
- Comparable to performance seen in 2022 and Run 2

Number of hits / 4 µm

### **Cluster charge distributions**



#### On-track cluster charge consistent across detector

## Cluster charge measurement

Cluster charge measured as function of bias voltage to determine when settings should be adjusted Current settings

- Layer 1: 450V
- Layer 2: 350V
- Layer 3 & 4: 250V
- Ring 1: 350V
- Ring 2: 300V



# Layer 1 radiation damage

Layer 1 evolving rapidly

- HV bias scans performed regularly to monitor performance
- ➡ Layer 1 began Run 3 with HV bias of 150V, now at 450V



16 October 2023 | VERTEX 2023

### Automasked channels

- Channels masked during data-taking due to readout errors
  - ➡ Layer 1: operational problem first mitigated by increasing number of allowed readout errors before channel masking
  - ➡ Layer 2-4: unrecoverable SEUs accumulate over a fill
- Recovery action at certain pile up
- Data quality remained good for CMS



16 October 2023 | VERTEX 2023

### **Automasked channels**

- Problem greatly mitigated by adjusting phases of the 400MHz data transmission (relative phase of readout chip and TBM)
  - Calibrations do not not always predict a good setting for high rate data transfer
- Automasking of Layer 1 modules now very low, usually 1% of channels



#### **QPLL** issue





- Quartz controlled PLL circuit does not lock to LHC clock
- Layers 3 and 4 of one sector of barrel pixels affected
- Modules are not currently read out
  - Fixing the issue would require extracting and reinstalling pixel detector



### Heavy ion collisions



Pixels performing well during heavy ion collisions

- Buffers increased to allow for larger event sizes in readout
- Low luminosity leads to virtually no SEUs

# Summary

- Detector in good health with continuous monitoring and calibrations
- Overall successful performance in data collection with proton-proton collisions with inst. Iumi up to 2\*10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - readout errors resolved by adjusting timing setting
  - QPLL issue persists
- Heavy ion collision data collection ongoing
- Looking forward to the rest of Run 3!







# Backup

#### Hardware connections



### **Automasked channels**

- Fill 8736: Channel auto-masked if there are 30 Out-of-Sync (OOS) errors seen in one minute in the channel
- Fill 8817: OOS setting was changed from 30 OOS/minute to 63 OOS/minute
- Fill 8821: The Token Bit Manager phase settings of several modules in BPix Layer 1 were changed



16 October 2023 | VERTEX 2023

### Automasked channels: fill details

Fill 8736 (8 May 2023):

- Number of bunches: 1805
- Peak instantaneous luminosity: 1.56x10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- Peak PU: 61.401

Fill 8817 (24 May 2023):

- Number of bunches: 2345
- Peak instantaneous luminosity: 2.05x10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- Peak PU: 62.299

Fill 8821 (25 May 2023):

- Number of bunches: 2345
- Peak instantaneous luminosity: 2.12x10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- Peak PU: 64.316
- All fills have the same trigger rate

# Alignment



Grace Haza | University of Nebraska, Lincoln



- Alignment performed with cosmic rays, 900GeV collisions, 13.6TeV collisions
- Distributions are medians of track-hit residuals
- Hit prediction obtained from all other track hits
- Median of distribution taken for each module
- Width of this distribution constitutes a measure of the local precision of the alignment results
- Deviations from zero indicate possible biases

16 October 2023 | VERTEX 2023

### DCDC issue in Run 2

- Flaw in FEAST chip design
- When DCDC disabled, charge build up on circuit due to irradiation, causing DCDC to break
- Impact:
  - converters not used to power cycle modules
  - powercycling needed for stuck TBMs
  - reduced power supply voltage to 9V
  - high current trips in power groups with higher number of modules
  - disabled a few DCDC converters to prevent trips
  - no broken DCDC converters in 2018

### **DCDC damaged modules**

DCDC damaged modules not correctly powered

- Sensor leakage current cannot be drained efficiently if the ROC is not powered
- Bias voltage (HV) ON and module power (LV) OFF leads to bad grounding
- Leakage current is drained through the pre-amplifier, damaging the pre-amplifier and the module
- Damage seems to accumulate with radiation and distance from beamline
- 6 (accessible) Layer 1 modules replaced during 2017-18 YETS out of total 8 damaged modules in Layer 1
- Accessible DCDC-damaged modules in Layer 2 were replaced during LS2



#### Hit efficiency and hit residuals measurement

Hit efficiency is the probability to find any cluster within 1mm around an expected hit independent of the cluster quality

- Measured using muon tracks with pT > 2 GeV
- Bad components of the pixel detector are excluded from the measurement

#### Hit residuals measurement:

- Triplet method
  - $\circ$  p<sub>T</sub> > 12 (4) GeV tracks with hits in 3 layers (disks) are selected and refitted using hits in two of three layers (disks) for the BPIX (FPIX).
  - Trajectory is extrapolated to remaining layer (disk) and residuals with the actual hit are calculated for the BPIX (FPIX)
  - Residual distribution fitted with the Student-t function to obtain the mean offset ( $\mu$ ) and resolution ( $\sigma$ )
    - Residual offset (mean) and resolution are obtained from the fit
  - Triplets considered:
    - Layer 3: propagate from hits on Layer 2 and 4
    - Disk 2: propagate from hits on Disks 1 and 3
- Reconstruction:
  - Generic:
    - Simple algorithm based on track position and angle
    - Used in our High Level Triggers (HLT) and early track iterations offline
  - Template:
    - Algorithm based on detailed cluster shape simulations
    - Used in the final fit of each track in the offline reconstruction