DRD3 - Solid State Detectors - Research Proposal -DRD3 Proposal Team October 15, 2023

5 Contents

1

2

3

4

6	1	Scop	e of the DRD3 collaboration	3
7		1.1	The DRD3 working group structure	3
8		1.2	The DRD3 proto-collaboration	3
9		1.3	Strategic R&D	5
10		1.4	Common R&D	5
11		1.5	DRD3 research structure	6
12		1.6	Institutes participation to working groups and work packages	8
13	2	WG	1: Monolithic CMOS sensors	10
14		2.1	WG1 Research Goals	10
15		2.2	Technology processes	13
16	3	WG2	2: Sensors for tracking and calorimetry	17
17		3.1	Spatial and temporal resolutions at extreme radiation levels	17
18		3.2	Spatial and temporal resolutions at low radiation levels and low material	
19			and power budgets	17
20		3.3	WG2 Research Goals	18
21	4	WG	3: Radiation damage and extreme fluence operation	19
22		4.1	Radiation damage and hardening studies at material level	19
23		4.2	Radiation damage and hardening studies at device and system levels	20
24		4.3	WG3 Reasearch Goals	21
25	5	WG4	4: Simulation	22
26		5.1	Activities	22
27		5.2	WG4 Research Goals	23

28	6	WG5: Techniques, infrastructures and facilities for sensors character-	
29		isation	24
30		6.1 Working group implementation	24
31		6.2 WG5 Research Goals	25
32	7	WG6: Wide bandgap and innovative sensor materials	26
33		7.1 Diamond	26
34		7.2 Wide-band semiconductor	27
35		7.3 WG6 Research Goals	27
36	8	WG7: Sensor interconnection techniques	29
37		8.1 Maskless interconnections: anisotropic conductive films or pastes (ACF,	
38		ACP)	29
39		8.2 Improvement and diffusion of classical interconnection technologies	30
40		8.3 3D and vertical integration for High Energy Physics silicon detectors	31
41		8.4 WG7 Research Goals	31
42	9	WG8: Outreach and dissemination	32
43		9.1 Disseminating knowledge on solid-state detectors to people working in	
44		high-energy physics	32
45		9.2 Disseminating knowledge on solid-state detectors to high-school students	
46		and the general public	33
47		9.3 WG8 Research Goals	33
48	10	Relationship between work packages and research goals	34
49	11	DRD3 Resources (2024 - 2026)	38
50		11.1 List of research goals	38
51		11.2 DRD3 Resources	40
52		11.3 Resources for each research goal	40
53		11.4 List of working groups	43
54		11.5 Resources for each working group	43
55	12	Path to the DRD3 collaboration	45
56		12.1 Funding for DRD3 strategic R&D	45
57		12.2 Funding for DRD3 blue-sky R&D	46
58		12.3 Funding for DRD3 operation	46
59		12.4 Funding presently available in the RD50 collaboration	46
60	13	Annex - I: List of institutions	47
61	14	Annex - II: DRD3 Proposal Team	54
62	15	Acronyms used in the proposal	55
	10	Deferences	E 7

⁶⁴ 1 Scope of the DRD3 collaboration

The DRD3 collaboration has the dual purpose of pursuing the realization of the strategic developments outlined by the Task Force 3 (TF3) in the ECFA road map [2] and promoting blue-sky R&D in the field of solid-state detectors.

68 1.1 The DRD3 working group structure

The DRD3 structure is based on grouping activities broadly focused on common goals.
At the moment, the following eight working groups are foreseen [1]:

- WG1 Monolithic CMOS sensors
- WG2 Sensors for tracking and calorimetry
- WG3 Radiation damage and extreme fluences
- WG4 Simulation
- WG5 Characterization techniques, facilities
- WG6 Wide bandgap and innovative sensor materials
- WG7 Interconnect and device fabrication
- WG8 Dissemination and outreach

The work in the WGs is organized around research goals (RG), presented in the subsequent sections of this document.

81 1.2 The DRD3 proto-collaboration

The interest of the physics community in the DRD3 program has been evaluated via questionnaires.

Presently, the DRD3 proto-collaboration comprises 119 groups from 28 countries,
for about 900 interested people (see Annex, page 47). Figure 1 shows the geographical
distribution of the DRD3 institutes: ~ 70% are from Europe, 15% from North America,
10% from Asia, 5% from South America.

Figure 1: Top: Continent of origin of the DRD3 institutes. Bottom: number of DRD3 institutes per country

⁸⁸ 1.3 Strategic R&D

⁸⁹ The four strategic Detector R&D Themes (DRDT), identified in the ECFA roadmap ⁹⁰ process [2], are shown in Table 1:

DRDT 3.1	DRDT 3.2
CMOS sensors	Sensors for 4D-tracking
DRDT 3.3	DRDT 3.4
Sensors for extreme fluences	A demonstrator of 3D-integration

Table 1: The four strategic DRDTs of the DRD3 collaboration

The activities of five WGs map directly into a DRDT, while three WGs are transversal, and their activities benefit all DRDTs. The relation between DRDTs and WGs is shown in Fig. 2.

Figure 2: Relationship between DRDTs and Working Groups (WGs)

The implementation of the strategic R&Ds, as defined by the road-map, will happen via several work packages (WP), each focused on a given topic. The envisioned WPs are listed in Table 2. Additional WPs might be defined.

Figure 3 shows the timeline of experiments that are already planned or at the proposal level. In the following, their needs are used to define the most important strategic R&D for the next few years.

100 **1.4 Common R&D**

One of the main goals of the DRD3 collaboration is to foster blue-sky research and collaboration among groups. The main tool to achieve these goals is creating a fund to finance selected common projects (CP). It is foreseen that each proposed CP finds 50% of the financing among the proponents, while DRD3 finances the other 50%. In order to access the DRD3 contribution, each CP has to be presented to the collaboration to

DRDT	WP	Title
3.1	1	DMAPS: spatial resolution
3.1	2	DMAPS: timing resolution
3.1	3	DMAPS: read-out architectures
3.1	4	DMAPS: radiation tolerance
3.2	5	4D tracking: 3D sensors
3.2	6	4D tracking: LGAD
3.3	7	Extreme fluence: wide band-gap materials (SiC, GaN)
3.3	8	Extreme fluence: diamond based detectors
3.3	9	Extreme fluence: silicon detectors
3.4	10	3D Integration: fast and maskless interconnect
3.4	11	3D Integration: in house post-processing for hybridization
3.4	12	3D Integration: advanced interconnection techniques for detectors
3.4	13	3D Integration: mechanics and cooling

Table 2: DRD3 work packages. Additional WPs can be added.

Figure 3: Timeline of the near-term R&D

¹⁰⁶ be evaluated. This research fund is financed by an annual fee of about 2,000 CHF each
 ¹⁰⁷ institute must pay.

108 1.5 DRD3 research structure

¹⁰⁹ Figure 4 graphically shows the DRD3 research structure.

Research is organized in working groups (WG)
WGs focus their activities around research goals (RG)
The ECFA R&D roadmap identified four strategic Detector R&D Themes (DRDT)
The implementation of the DRDTs happens via work packages (WP) with associated deliverables.
The DRD3 collaboration promotes blue-sky R&D via common projects (CP).

¹¹⁶ The relationship between work packages and research goals if shown in Section 10.

WG: Working group RG: Research goal WP: Work package CP: Common project

Figure 4: The DRD3 structure

117 1.6 Institutes participation to working groups and work packages

Figure 5 reports the number of institutes willing to contribute to each working group or work package. The figures show that the collaboration is well distributed among WGs and WPs.

Figure 5: Top: number of institutions interested in each working group. Bottom: number of institutions interested in each work package

Figure 6 details the number of institutes interested in each WG for each country.

Figure 6: Number of institutes interested in each WG for each country.

¹²² 2 WG1: Monolithic CMOS sensors

WG1 aims to advance the performance of monolithic CMOS sensors for future tracking 123 applications, tackling the challenges of very high spatial resolution, high data rate, and 124 high radiation tolerance while maintaining low mass, covering very large areas, reduc-125 ing power, and keeping an affordable cost. WG1 will explore high-precision timing for 126 applications such as Timing Layers and in full 4D tracking. It will also consider appli-127 cation in the electromagnetic section of a High Granularity Calorimeter. WG1 includes 128 the design and experimental evaluation of fabricated sensors, and the development of 129 suitable data acquisition systems. WG1 will benefit from synergies and common areas 130 with other DRD3 WGs, and close collaboration with DRD7 for readout architectures 131 and DRD8 for integration (DRD8 still to be formed). 132

133 2.1 WG1 Research Goals

The R&D program can be divided into three phases according to the timelines of the 134 strategic programs: (i) the initial stepping stones developments of ALICE-3, LHCb-2, 135 EIC, Belle-3, ATLAS, CMS, and HGCAL (DRD6); (ii) the subsequent further develop-136 ments for e⁺e⁻ colliders; (iii) and, lastly, the R&D for MC and FCC-hh. This proposal 137 details the deliverables for the first R&D phase up to 2027 and highlights the R&D path 138 from 2027 on. Several research goals (RG) and common areas (CA) are identified to be 139 developed in available technology processes. The specification values below are expected 140 to be significantly advanced or reached in at least one technology by the end of the first 141 phase (<2027). The summary of the research goals is presented in Table 3. 142

	WG1 research goals <2027
	Description
RG 1.1	Spatial resolution: $\leq 3 \ \mu m$ position resolution
RG 1.2	Timing resolution: towards 20 ps timing precision
RG 1.3	Readout architectures: towards 100 MHz/cm ² , 1 GHz/cm ² with 3D stacked monolithic sensors, and on-chip reconfigurability
RG 1.4	Radiation tolerance: towards $10^{16} n_{eq}/cm^2$ NIEL and 500 MRad

Table 3:	WG1	research	goals	for	<	2027
----------	-----	----------	-------	-----	---	------

- ¹⁴³ The list of common areas identified so far is the following:
- CA 1.1: Interconnection and data transfer;
- CA 1.2: Integration;
- CA 1.3: Non-silicon materials;
- CA 1.4: Simulation and characterisation.

The R&D deliverables are Multi-Project Wafer (MPW) submissions in different tech-148 nologies and foundries as presented in Fig. 7. They cover four research goals to address 149 the strategic program performance requirements outlined in the EFCA Detector R&D 150 roadmap [2]. The MPW features and timeline are summarized in Fig. 7, while more 151 details on the potential and complementarity of the various technologies are presented in 152 the following section. Once the DRD3 collaboration is formed, the MPW details will be 153 fine-tuned to ensure proper coverage of all the parameters. Developments in the common 154 areas within DRD3 and with other DRDs will also be better defined. Particularly this 155 can concern developments of complex readout architectures and first evaluation of the 3D 156 integration of a sensitive CMOS chip with an independent digital chip in collaboration 157 with DRD7. 158

DRD3	WG1 Monolithic CMDS	Assess technology perform.	ance for each RG – handle to time s	technical solution options for scale	strategic programs of LS4	Toward 4D-tracking for future colliders
Re	Timeline	2024	2025	2026	2027	≥ 28
sea	Technologies		For	undry submissions and Milest	onses (MS)	
arch G	TPSCo (TJ) 65 nm	design MPW1.1	submit MPW1.1 mid-2025 design MPW1.2	evaluate MPW1.1 submit MPW1.2 Q4-2026	C PLUD MDV	design/submit/evaluate MPW1.3-1.n
pals	T.J/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	design MPW1.1 submit MPW1.1Q4-2024	evaluate MPW1.1 design MPW1.2	submit MPW1.2 Q1-2026	evaluate r.r. w r.c	(possibly including in common submissions ER designs for dedicated experiments)
RG Posit precis	TPSCo (TJ) 65 nm	electrode size/shape/ 12‴ ER splits, thin epi optimized for high char	pitch, process variants itaxial layer, stitching nnel density (low pitch)			
31 tion sion	TJ/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	electrode size/shape/pitch, wafer 8* ER or N	r type/thickness, process variants MLM splits	MS1 establish position precision versus technology, channel	MS5 handle technical solutions for	
RG Timing pr	TPSCo (TJ) 65 nm	similar optimized for fast signal coll	to RG1 llection speed and high S/N	comiguration and readout mode establish time precision versus technology, channel	verrex use coor (ALLCE - 3, LTCP) 2, Belle-3, CMS(ATLAS) 1) high radiation toleranoe/rate technologies > 65 nm	
i2 ecision	T.J/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	similar optimized for fast signal coli including gair	to RG1 Illection speed and high S/N in layer option	comguation MS3 establish performance of readout variants for power	z) riigr onarmei density, sitoriing TPSCo 65 nm MS6	
RG Read archite commo DRI	ТРSСо (ТJ) 65 пт	digitallbinary, synchri optimised to features of RG power distribution and contro	onous/asynchronous 31 and RG2 at medium rates 01 in large size stitched matrix	Consumption MS4 establish radiation tolerance provide guidlenies for choice of	rande comman sources rol Central Tracking (ALICE-3, EIC, LHCb-2, Belle-3), Timing Layers (ALICE-3, ATLAS, CMS) with minution TDSC 665 cm	
33 Jout cture n with D7	T.J/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	digital/binary, synchro optimised to features of RG1 and	onouslasynchronous d RG2 at medium and high rates	substrates selectimerge MPW1 features add new technology features	wird sutorning in occord min MS7 handle technical solutions for	merger H s and various recrimology achievements in selected technologies, extend all to stitching implement 3D integration
RG Radia tolera	TPSCo (TJ) 65 nm	process feat	tures in splits	submit configurations for Vertex Detector, Central Tracking, Timing Layers, HGCAL	iow power wro and wr precision timing, at medium and high rates	consider tiner nodes and new materials
i4 tion nce	T.J/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	variants of substrates (Cz, epitax	ial), resistivity, p-type and n-type			
	Interconnection & data transfer WG7/IDRD7	3D integration demonstrator -	· ТJ 180 (65) nm CIS (sensing) + 130	0 (65) nm CMOS (high rate/precision	n timing at high chan. density)	
Common	Integration & cooling VG7/DRD8	develop li <u>c</u>	ght mechanical designs and coolin	ng, systems optimized to power con	sumption	
Areas	Non-silicon materials ¥G6/DRD7		qualify radiati	tion tolerance		
	Simulation & characterization WG41WG5		develop dedicated m	nonolithic CMDS tools		

Figure 7: WG1 research goals and technology developments planning

159 2.2 Technology processes

The technology processes shortly introduced below complement one another in terms of features that are beneficial for the research goals of monolithic sensors in DRD3. All of the described technologies are accessible to the HEP community, usually through direct collaboration with institutes or through framework contracts with the foundries. The features available in these technologies are attractive for HEP detectors as their combination provides a complementary set of parameters to optimize the performance of future monolithic sensors:

- Wafer sizes of 200 mm and 300 mm;
- High resistivity bulk through high resistivity epitaxial and Czochralski substrates
 of p- and n-type;
- Processes with node sizes ranging from 65 nm to 180 nm and potential to optimize implant designs for charged particle detection (e.g. radiation hardness, timing resolution, etc.);
- 173 174

• Availability of MPWs and/or dedicated engineering runs with large reticles (in some cases, including options of reticle stitching or 3D stacking to logic wafers).

TPSCo 65 nm Developing the 65 nm technology to achieve the highest position 175 precision in large-area sensors is an important goal. This technology uses an epitaxial 176 layer, which is currently fixed at 10 μ m. It features seven metal layers at this stage and 177 the manufacturer offers engineering run submissions in 300 mm wafers. The stitching 178 method to reproduce the reticle pattern (25 mm \times 32 mm) can be used to allow large 179 sensitive areas over a full wafer. Wafers can be thinned to much less than 50 μ m. The 180 small technology node allows the highest channel density achieved so far with pitches 181 below 20 μ m. Fully exploiting this high granularity potential will, however, need devel-182 opment of low-power readout coupled with a specific voltage distribution to cope with 183 large active areas. The potential for a precise timing measurement will also be evalu-184 ated for the characteristic features of this technology. To further extend the ability to 185 implement new functionalities and to increase the rate capability at high channel den-186 sity, 3D stacking of the analog-sensitive component with a separate logic wafer will also 187 be explored. Developments in the TPSCo 65 nm technology are recent and have been 188 driven by the ALICE ITS3 project. A dedicated engineering run for ITS3 is foreseen in 189 spring 2024. It will substantially advance the knowledge of the technology and also offer 190 the possibility for few development chiplets developed by experts having contributed 191 to the first submissions. In the first R&D phase proposed above, two engineering runs 192 are currently planned, the first one around mid-2025, and the second early 2026. They 193 will include the development of complex architectures, in collaboration with DRD7, that 194 eventually could be ported to other technologies. 195

LFoundry 110 nm The LF11IS is an automotive-grade CMOS Image Sensor node offering a six aluminum layer (BEOL) stack. Access to fabrication is possible through regular MPW and Multi-Layer Mask (MLM) runs. The foundry allows for custom

high-resistivity substrates on Front-Side Illuminated (FSI) and/or Back-Side Illuminated 199 (BSI) process flows, including the possibility of using a dedicated maskset for backside 200 lithography. While the maximum reticle size is 26 mm \times 32 mm, the LF11IS technol-201 ogy has a stitching option. Based on this technology, sensors on active fully-depleted 202 thicknesses ranging from 50 to 400 μ m have been developed. The flexibility of the 203 foundry process and product engineering teams allows exploring multiple wafer splits 204 (n-epi thickness, n- or p-type starting substrate, substrate resistivity, implementation of 205 a gain layer creating a monolithic LGAD, FSI or BSI process on different wafer thick-206 nesses). In the framework of ARCADIA, INFN and LFoundry agreed on the terms to 207 allow for the participation of third-party design groups to joint production runs. In this 208 case, the third-party design group will be provided with regular access to the CMOS 209 LF11IS iPDK (Interoperable Process Design Kit) for the implementation of proprietary 210 architecture and sensor designs. Other than providing a library of signal samples for the 211 chosen sensor geometry, INFN handles the sensor integration to the third-party design 212 and final Design Rule Checking (DRC) of the design database during the preparation 213 for the tapeout. This option enables a straightforward, low-risk, and very fast ramp-up 214 of the R&D on sensors using LF11IS technology for new groups and design teams. This 215 technology will develop 100 ps, 100 μ m pixels (20-30 ps with additional gain layer). It 216 will use n-epi active layer on p^+ substrate or high resistivity n-type substrate, thinned 217 down to 100-400 μ m. 218

IHP 130 nm The Silicon Germanium BiCMOS 130 nm process from IHP micro-219 electronics combines state-of-the-art Heterojunction Bipolar Transistors (HBTs) per-220 formance and the advantages of a standard CMOS process. HBTs are ideal for high-221 performance timing applications thanks to their enhanced bandwidth and a better noise-222 power ratio than CMOS transistors. The process features a large n-well collection elec-223 trode that hosts the electronics. A nested p-well contains nMOS and PNP-HBT transis-224 tors. Isolation of the bulk of pMOS transistors from the collection n-well will be explored 225 in future submissions. A small-scale demonstrator achieved a timing resolution of 20 ps 226 at an analog power density of 2700 $\mathrm{mW/cm^2}$ and 30 ps at 360 $\mathrm{mW/cm^2}$. Preliminary 227 radiation characterization shows good radiation tolerance. Sensors are implemented 228 in high resistivity substrates up to 4 k Ω ·cm and can be equipped with a Picosecond 229 Avalanche Detector (PicoAD) gain layer for improved timing performance. The latest 230 prototype with a 50 μ m pixel pitch targets sub-10 ps timing resolution. 231

LFoundry 150 nm The LFoundry 150 nm process (LF15A) is a mixed digital/high-232 performance analog, high-voltage CMOS technology node. It features up to six layers of 233 aluminum interconnection, with the possibility of an additional thick layer of top metal, 234 particularly suited to efficiently route power lines to large pixel matrices. This process 235 includes as well a deep p-well layer, which is useful for embedding digital logic inside the 236 collecting electrode. The foundry offers standard and high-resistivity wafers, and has 237 shown to be open to process modifications. There are typically two MPW shuttle runs 238 organized per year. MLM engineering runs are also possible and can be particularly 239 cost-effective for joint submissions handled by several teams. The LF15A technology 240 has been successfully used in the past years for tracking based CMOS demonstrators 241 (e.g. LF-CPIX, LF-MONOPIX chips, and RD50-MPW chips) and for non-amplified 242

CMOS timing sensor concepts with performance better than 100 ps (CACTUS chips). 243 Characterization of irradiated samples has shown the technology to be radiation tolerant 244 up to dose levels suitable for the innermost layers of tracking detectors at the HL-LHC. 245 The community is currently negotiating a framework agreement with this foundry to 246 produce a certain number of submissions over a fixed period, taking advantage of special 247 conditions and potentially lower production costs. This technology will develop fully 248 depleted 50-250 μ m thin sensors, with <25 μ m pixels and use >2 k Ω ·cm high resistivity 249 substrates. It will also explore 30 ps/MIP timing with 250 μ m pixels. 250

TSI 180 nm The TSI Semiconductors 180 nm is a high-voltage CMOS technology. 251 As part of its standard layer stack, it has a deep n-well, typically used to host low-voltage 252 readout electronics while isolating them from the high-voltage substrate. It also has a 253 deep p-well that integrates digital readout electronics within the deep n-well. It features 254 a total of seven metal layers. TCAD models are available. Fabrication on high-resistivity 255 substrates is possible, and the foundry can manufacture designs on wafers provided by 256 the customer. Stitching is possible too. The maximum reticle size is 2.1 cm \times 2.3 cm. 257 High-voltage CMOS sensors in this technology have demonstrated a time resolution of 2.4 258 ns at low noise rates and shown an excellent performance concerning efficiency and noise 259 even after irradiation with protons and neutrons with fluence up to $2 \times 10^{15} n_{eq}/cm^2$. 260 The smallest pixel pitch demonstrated so far is 25 μ m. Submissions to this foundry are 261 engineering runs, although wafer sharing is possible. TSI 180 nm is the technology for 262 the pixel tracker of the Mu3e experiment (MuPix), and LHCb is considering it for the 263 proposed Mighty Tracker upgrade (MightyPix). Sensors in this technology have been 264 thinned down to 50 and 70 μ m, and demonstrated to work efficiently in the framework 265 of the Mu3e experiment (50 μ m for the vertex layers, and 70 μ m for the outer tracker 266 This technology has been used to develop prototypes and final sensors for lavers). 267 several other particle physics applications (e.g. CLICpix, ATLASpix), for test beam 268 instrumentation (e.g. TelePix), and for applications in space (e.g. AstroPix). The TSI 269 process is layout compatible with the aH18 process of ams-osram. 270

TowerJazz 180 nm The Tower Semiconductor 180 nm CMOS imaging process is 271 well-established in the HEP community. It provides cost-effective manufacturing and 272 prototyping on 200 mm wafers. It features six metal layers plus the possibility for a final 273 thick metal layer that can be used to facilitate signal and power distribution. The pro-274 cess includes deep p-wells to allow full CMOS functionality to embed digital and analog 275 electronics side-by-side in the pixel. The foundry offers to produce on foundry-supplied 276 and customer-supplied (after approval) wafer stock. Sensors have been successfully pro-277 duced on epitaxial (up to 30 μ m thickness) and high-resistivity Czochralski substrates, 278 with a typical device thickness of 100 μ m although the community has experience also 279 with 50 μ m and 300 μ m devices. Through close collaboration with the foundry, the 280 implantation profiles can be optimized for specific sensor needs, which has been done 281 successfully to achieve high radiation hardness. The possibility to combine different im-282 plants in the pixel and optimize implantation profiles together with Tower engineers will 283 be an essential means to develop optimized sensors for radiation hardness and timing 284 capabilities. Prototyping takes advantage of regularly offered MPWs (up to four yearly 285 shuttle runs). Also, MPW runs allow process modifications in individual layers related 286

to charge collection. This process has been successfully used recently for a large family of small-electrode monolithic CMOS sensors ranging from ALPIDE and MIMOSIS sensors to radiation hard sensors like TJMonoPix and MALTA. With a reticle size of 30 mm × 25 mm, it provides sufficient space to prototype multiple sensors in a single engineering run for maximum processing flexibility and cost-effective prototyping.

3D stacking option Recently Tower Semiconductor and its European representa-292 tive company Etesian have advertised the possibility of using waferstacking of the 180 nm 293 CMOS Image Sensors (CIS) to its 130 nm mixed signal CMOS. The foundry performs 294 the stacking, and it is offered to customers through a PDK. The 3D stacked 180 nm CIS 295 + 130 nm CMOS is also accessible through regular MPWs organized by the foundry. 296 This 3D stacked technology promises the potential for HEP sensors as 3D-stacked mono-297 lithic sensors with an optimized sensor layer and a 130 nm signal processing layer for 298 more complex logic as required for high-rate and timing applications. The radiation 299 tolerance is expected to be the same as that of the individual processes. This technol-300 ogy will develop 3D stacking, timing through different geometries with/without internal 301 gain, and on-sensor time-stamping. It will use different resistivity substrates to expand 302 to high radiation tolerance. Knowledge obtained in a medium node size (180 nm, 130 303 nm) provides cost-effective information on 3D integration that can be transferred to the 304 65 nm 3D stacked CIS + CMOS also offered by Tower.305

³⁰⁶ 3 WG2: Sensors for tracking and calorimetry

WG2 aims to advance the performance of sensors for 4D tracking, and it is aligned with 307 the goals of DRDT2. The scope of WG2 is quite broad, as it addresses the R&D of 308 sensors for very different environments: vertex or tracker, low/high radiation, low/high 309 occupancy, low/high power, and low/high material budget. Presently, sensors with 4D 310 capabilities are foreseen in many systems, from Time-of-Flight systems with only 1-2 311 layers of sensors with the best possible resolution to large 4D trackers with many layers. 312 In this latter case, if the temporal resolution is good enough, recognition algorithms can 313 use four coordinates in the reconstruction, simplifying the pattern recognition. Broadly 314 speaking, the challenges at Hadron colliders are mostly linked to radiation levels (mainly 315 in the vertex detector) and high occupancy. In contrast, at lepton colliders, the challenges 316 are related to material budget and low power consumption. 317

It is noted that the various developments comprise studies on the sensor production techniques including e.g. passive CMOS sensor technologies.

320 3.1 Spatial and temporal resolutions at extreme radiation levels

For this R&D, the new innermost layers of ATLAS/CMS and the LHCb velo pixel systems are used as stepping stones for the formidable developments needed for FCChh. Due to their short drift path and low depletion voltage, 3D sensors are strong candidates for these upgrades.

- RG 2.1 Reduction of pixel cell size for 3D sensors.
- ³²⁶ 2024-2025: 3D sensors test structures with pixel size smaller than the current ³²⁷ $50 \times 50 \ \mu m^2$ or $25 \times 100 \ \mu m^2$
- -2026-2028: Large size 3D sensors with reduced pixel size.

• RG 2.2: 3D sensors with a temporal resolution of about 50 ps.

- $\begin{array}{ll} & -2024\text{-}2025: \text{ Production of a small matrix with pitch } 42 \times 42 \ \mu m^2 \text{ or } 55 \times 55 \ \mu m^2 \\ & \text{ to be connected with existing read-out ASICS} \end{array}$
- 2026-2028: Production of large-size sensors (using the selected geometry from the R&D runs) and interconnection with custom-made read-out ASIC

334 3.2 Spatial and temporal resolutions at low radiation levels and low material and power budgets

Future upgrades beyond LHC phase-II might seek to introduce 4D layers at moderate radiation levels ($1 - 3 \cdot 10^{15} n_{eq}/cm^2$), with a spatial resolution of about 10 - 30 μ m. Sensors for lepton colliders require a very low material budget and minimal power consumption. Presently, sensors with moderate values of internal gain, the so-called Low-Gain Avalance Diodes (LGAD), are the most promising candidates. In fact, low gain allows for an increased signal size while keeping the noise constant, an important feature in timing applications. Low gain is also important for applications that require
a low material budget as the sensor can be very thin, and the power of the electronics
can be reduced since the "first amplification stage" is contained in the sensor itself. The
LGAD design can be employed also in the MAPS design.

- RG 2.3: LGAD Sensors with very high fill factor, and an excellent spatial and temporal resolution.
- 2024-2025: LGAD test structures of different technologies (TI-LGAD, iL-GAD, RSD, DJ-LGAD), matching existing read-out ASICs.
 - 2026-2028: Large LGAD sensors based on the best-performing technology.

• RG 2.4: LGAD sensors for Time of Flight applications

- 2024-2026: Production of LGAD (RSD) sensors with large size for Track ing/Time of Flight applications to demonstrate yield and doping homogeneity.
 Study of spatial and temporal resolutions as a function of the pixel size.
- 2026-2028: Structures produced with vendors capable of large-area productions to demonstrate the industrialization of the process.

357 3.3 WG2 Research Goals

350

³⁵⁸ Table 4 list the WG2 research goals.

	$\rm WG2\ research\ goals < 2027$					
	Description					
RG 2.1	Reduction of pixel cell size for 3D sensors					
RG 2.2	3D sensors for timing $(50 \times 50 \ \mu m, < 50 \ ps)$					
RG 2.3	LGAD for 4D tracking $<$ 10 $\mu {\rm m},$ $<$ 30 ps, wafer 6" and 8"					
RG 2.4	RSD for ToF (Large area, $< 30 \ \mu m, < 30 \ ps$)					

Table 4: WG2 research goals for < 2027

³⁵⁹ 4 WG3: Radiation damage and extreme fluence operation

This WG aims to provide a fundamental scientific understanding of radiation damage 360 processes in solid-state detectors and detector materials at low, high, and extreme ra-361 diation levels of up to 5×10^{18} cm⁻² and 5000 MGy, as anticipated for the forward 362 calorimeters in the FCC-hh after an integrated luminosity of 30 ab^{-1} . The existing and 363 newly generated knowledge will be used to optimize the radiation tolerance of the various 364 detector types under development within the collaboration through defect and material 365 engineering, device engineering, and optimization of operational conditions. The work 366 is organized in two areas. The first is the study of the radiation damage mechanisms 367 in detector materials, including the formation of microscopic defects and their impact 368 on device performance; the second is the study and modeling of radiation damage to 369 devices. In both areas, the full range from very low to high fluences and finally up to 370 extreme fluences beyond 2×10^{16} cm⁻² has to be covered. The latter work covers the 371 Roadmap DRDT 3.3. on extreme fluence operation, while WG3 reaches deeply into all 372 four Roadmap DRDTs for solid-state detectors wherever radiation damage is of concern. 373

374 4.1 Radiation damage and hardening studies at material level

Understanding radiation damage at the microscopic level and the consequences on mate-375 rials and device properties is a necessary prerequisite for efficient and successful detector 376 development. Comprehensive investigations of defects generated in irradiated sensors 377 providing accurate evaluations of defect concentrations and trapping parameters can be 378 achieved by employing specific spectroscopic techniques based on capacitance or current 379 measurements (e.g. DLTS, TSC, TSCap). Such methods have been successfully applied 380 on fabricated silicon sensors up to fluences of about $10^{15} n_{eq}/cm^2$. They provide both the 381 characteristics of radiation-induced defects that are also fundamental input parameters 382 to sensor performance simulations under various conditions and knowledge for developing 383 material and defect engineering strategies. As the extrapolation of damage parameters 384 to higher fluences has proven to be too pessimistic, and the defect formation process 385 is not a linear function of fluence, further characterization work at higher fluences is 386 essential but exceeds the range of applicability of present experimental characterization 387 methods. Therefore, the understanding of the radiation damage at extreme fluences 388 requires, in addition, comprehensive modeling of defect generation, including the higher 389 order radiation-induced defects, and the employment of other techniques suitable for de-390 tecting defects in large concentrations, i.e., above 10^{16} cm⁻³, such as EPR, FTIR, XRD, 391 Raman, and PL. Even more demanding is the understanding of radiation damage in wide 392 band gap (WBG) and other materials where presently, compared with silicon, signifi-393 cantly less knowledge exists. In addition, the changes of the fundamental semiconductor 394 properties (e.g., carrier mobilities, carrier lifetime) at extreme fluences are very poorly 395 known, although they are needed for any detector design work. These challenges will be 396 addressed in the years to come, starting with developing the defect-engineered strategies 397 for obtaining detailed and precise electrical characterization of point and cluster defects 398 generated by irradiations up to fluences of $10^{16} n_{eq}/cm^2$ by means of DLTS, TSC, and 399

TSCap techniques. Highly irradiated devices (above 10¹⁷ n_{eq}/cm²) will start to be investigated by EPR, FTIR, XRD, Raman and PL, to provide the needed information about the chemical structure of radiation-induced defects and their introduction rates, to be used in developing a realistic radiation model up to extreme radiation fluences. The change in the carrier lifetime and mobility will be evaluated from carrier lifetime and Hall effect measurements.

406 4.2 Radiation damage and hardening studies at device and system 407 levels

The detector community will need a wide variety of radiation damage studies in the 408 near and long term. Tracking and timing detectors, including, for example, several 409 configurations of LGAD and 3D sensors, are already aimed at the earliest LHC up-410 grades. These will continue to need regular irradiations with various particle species 411 up to approximately $5 \times 10^{16} n_{eq}/cm^2$. Technology development in new directions will 412 also need radiation testing and radiation damage modeling; this includes large area and 413 thick silicon devices, applications for the LHCb and ALICE upgrades, the Electron-Ion 414 Collider, and space-based detectors. New efforts in high-granularity calorimetry and 415 quantum-imaging detectors are already seeking characterization within radiation con-416 texts. Devices proposed for later upgrades need radiation damage studies in the near 417 term too, for evaluation of monolithic CMOS and ASICs. Within the community, there 418 are already calls for facilities able to provide up to $10^{18} n_{eq}/cm^2$, with multiple beam 419 energies and species. TCAD and GEANT4 simulations are underway for new structures 420 and require validation with data. Data are urgently needed from TCT instruments and 421 testbeams, combined with dedicated data collected by the LHC experiments for leakage 422 current and depletion. 423

New sensor materials are under exploration, requiring either new or extended pa-424 rameterized models of their radiation damage response. These include all materials 425 studied in WG 6, particularly the wide bandgap semiconductors, which may benefit 426 from reduced cooling requirements. Radiation studies are also needed for new vertical 427 and heterogeneous integration techniques that are directly connected to materials im-428 provements. The foundational research toward understanding how fundamental material 429 properties, such as mobility, effective dopant concentrations, and carrier lifetimes, must 430 also continue and reach a more solid standing. The semiconductor detector community 431 needs to understand the validity limit of the current models (e.g., Hamburg Model) and 432 understand where the presently used non-ionizing energy loss (NIEL) hypothesis fails to 433 determine the best directions in defect and device engineering. New sensor materials are 434 under exploration, requiring either new or extended parameterized models of their ra-435 diation damage response. These include all materials studied in WG 6, particularly the 436 wide bandgap semiconductors, which may benefit from reduced cooling requirements. 437 Radiation studies are also needed for new vertical and heterogeneous integration tech-438 niques that are directly connected to materials improvements. The foundational research 439 toward understanding how fundamental material properties, such as mobility, effective 440 dopant concentrations, and carrier lifetimes, must also continue and reach a more solid 441

standing. The semiconductor detector community needs to understand the validity limit 442 of the current models (e.g., Hamburg Model) and understand where the presently used 443 non-ionizing energy loss (NIEL) hypothesis fails to determine the best directions in defect 444 and device engineering. New sensor materials are under exploration, requiring either new 445 or extended parameterized models of their radiation damage response. These include all 446 materials studied in WG 6, particularly the wide bandgap semiconductors, which may 447 benefit from reduced cooling requirements. Radiation studies are also needed for new 448 vertical and heterogeneous integration techniques that are directly connected to mate-449 rials improvements. The foundational research toward understanding how fundamental 450 material properties, such as mobility, effective dopant concentrations, and carrier life-451 times, change with irradiation must also continue and reach a more solid standing. The 452 semiconductor detector community needs to understand the validity limit of the current 453 models (e.g., Hamburg Model) and understand where the presently used non-ionizing 454 energy loss (NIEL) hypothesis fails to determine the best directions in defect and de-455 vice engineering. We do not lose sight of the fact that technology transfer beyond High 456 Energy Physics, for example, medical imaging, dosimetry, nuclear safety, and security, 457 requires rigorous radiation validation. 458

The present community for developing radiation-tolerant semiconductor detectors 459 includes many institutes comprising university groups and national laboratories. Regular 460 training is being offered at nearly all of them to expand the community and develop 461 expert junior researchers. Milestones to be achieved in the next three years include 462 (i) improved or new models for new materials and extreme radiation conditions; (ii) 463 a transfer of information from models to simulations; and (iii) sufficient irradiation 464 facilities and test beam support for this diverse program. Critical infrastructures on the 465 timescale of six years are the reliable availability of facilities providing integrated fluence 466 on the order of $10^{18} n_{eq}/cm^2$, in both charged and neutral species. 467

468 4.3 WG3 Reasearch Goals

The research goals of WG3 are summarized in Table 5.

	WG3 research goals <2027
	Description
DC 21	Build up data sets on radiation-induced defect formation in
ng 5.1	WBG materials
DC 20	Develop silicon radiation damage models based on measured
ng 5.2	point and cluster defects
DC 22	Provide measurements and detector radiation damage mod-
ng 5.5	els for radiation levels faced in HL-LHC operation
DC 2 4	Measure and model the properties of silicon and WBG sen-
NG 3.4	sors in the fluence range 10^{16} to $10^{18} n_{eq} cm^{-2}$

Table 5:	WG3	Research	goals	for	<	2027
----------	-----	----------	-------	-----	---	------

469

470 5 WG4: Simulation

The simulation work will be dedicated to the development of common simulation packages, tools, and radiation models. There will be two lines of activities that will be pursued: TCAD tools and so-called MC tools. While the former is commonly used in sensor design, process simulation, and radiation damage modeling the latter are extensively tested in sensor performance evaluation (with particle and Transient Current technique) benefiting from much faster code and integration of other software packages e.g. GEANT4.

Another important activity in WG4 will be the continuation of radiation hardness modeling, bulk, and surface, starting from the defect level using mainly TCAD, but also MC tools. Radiation hardness models for WBS will be explored and developed.

The WG4 will be an important part of many Work Packages: it will contribute to the simulations of sensor development and performance in WG1 and WG2, it will collaborate with WG3 to incorporate in the simulation the latest understanding of radiation damage, it will be used to optimize the developments of common tools(WG5), and will ease the use of WBS (WG6) by incorporating their properties in the simulation package.

486 5.1 Activities

⁴⁸⁷ The following activities are foreseen in the WG4

 TCAD activities will focus on providing verification of tools (mainly Silvaco and Synopsys, but also looking to other tools emerging) implementation of new physics models (impact ionization, mobility parametrization etc.), exporting tools, communication with software companies (e.g. implementation of WGS) and keeping the implementation of common solutions to device simulations.

• TCAD simulations will be complemented with charge transport simulation tools 493 - Monte Carlo tools - allowing detailed studies of complex sensor performance. 494 Different tools have been developed so far, but currently, the most supported and 495 advanced tool is Allpix Squared, which will form the main/production framework, 496 while other tools will continue to be used as verification and development tools. 497 It is foreseen that improvements in MC simulations will eventually be integrated 498 into AllPix2. The biggest obstacle for Monte-Carlo tools is currently the lack 499 of implementing adaptive/time-dependent weighting and electric fields in induced 500 current simulations. 501

- Modeling of the radiation damage in simulations has been evolving over the last two decades, but there is not a general model that, starting from the defect levels, comprehensively describes all the macroscopic properties of silicon. This is even more so at extreme fluences (WG3).
- Development of signal processing tools that can be used with MC and TCAD tools and general digitization models for different sensors technologies,

508 5.2 WG4 Research Goals

	WG4 research goals <2027
	Description
RG 4.1	Flexible CMOS simulation of 65 nm to test design variations
BC 4.2	Implementation of newly measured semiconductor proper-
110 4.2	ties into TCAD and MC simulations tools
PC 4 3	Definition of benchmark for validating the radiation damage
11G 4.5	models with measurements and different benchmark models.
PC 44	Developing of bulk and surface model for $10^{16} \text{cm}^{-2} < \Phi_{eq} <$
110 4.4	$10^{17} { m cm}^{-2}$
BC 45	Collate solutions from different MC tools and develop an
110 4.5	algorithm to include adaptive electric and weighting fields

The research goals of WG4 are summarized in Table 6.

Table 6: WG4 Research goals for < 2027.

509

⁵¹⁰ 6 WG5: Techniques, infrastructures and facilities for sen-⁵¹¹ sors characterisation

WG5 involves the establishment of a community-driven working group that focuses on the development, improvement, and dissemination of methods and techniques for characterizing sensors. By bringing together experts and leveraging collective resources, the working group aims to foster collaboration, knowledge sharing, and innovation in the field of sensor characterization within the particle physics community.

This working group operates across different Detector R&D Themes (DRDT) along three activity lines:

- Actively engage in the development, improvement, and diffusion of cutting-edge methods and techniques for sensor characterization. This involves exploring novel approaches and refining existing methodologies to assess and understand the performance and behaviour of sensors.
- The working group facilitates sharing of knowledge, resources, and expertise among participating researchers and institutions by identifying common infrastructures for sensor testing and fostering joint research activities. These collaborative endeavours aim to develop and deliver state-of-the-art infrastructures, as the Caribou data acquisition system, specifically designed for the comprehensive testing and evaluation of sensors.
- Promoting the use of unique characterization facilities. These facilities may possess rare capabilities, specialized equipment, or specific expertise in sensor characterization. The project seeks to raise awareness and encourage researchers to leverage these facilities to explore advanced characterization methods. The project aims to foster collaboration between researchers and these facilities, facilitating access to specialized resources.

535 6.1 Working group implementation

The working group implements two types of activities to fulfill its objectives. Firstly, there are joint research activities that involve the creation or improvement of new testing methods or testing infrastructures. These activities are structured as dedicated work packages with specific research goals and are time-limited. They address specific R&D projects, such as the development of techniques like TPA-TCT or defect spectroscopy methods.

Secondly, the working group engages in networking activities aimed at coordinating access to unique testing infrastructures. These infrastructures may include highenergy or high-intensity beams, micro-beam TRIBIC facilities, and EMC assessment laboratories, among others. The focus of these activities is to increase awareness among researchers about the availability of these facilities for sensor characterization. Additionally, the working group organizes dedicated workshops to provide training on different sensor characterization techniques. These workshops serve to educate researchers on the use of new and existing characterization methods and will be organized with the help ofWG8.

551 6.2 WG5 Research Goals

⁵⁵² The research goals of WG5 are summarized in Table 7.

	WG5 research goals <2027
	Description
RG 5.1	Develop TPA-TCT
RG 5.2	Common infrastructure
RG 5.3	Networking and training on methods

Table 7: WG5 research goals for < 2027.

⁵⁵³ 7 WG6: Wide bandgap and innovative sensor materials

⁵⁵⁴ Wide band-gap (WBG) semiconductors have some attractive properties and also some ⁵⁵⁵ associated problems.

Whilst a wide bandgap reduces the leakage current, maintaining low noise levels even at high temperatures, it also increases the electron-hole generation energy. This increase implies that the number of electron-hole pairs generated for the same deposited energy is lower in WBG materials.

However, the substantial reduction of the noise level ensures that the overall signalto-noise ratio (SNR) for WBG-based detectors is high enough, even after irradiation.
In addition, the high breakdown field allows operation at high internal electric fields,
minimizing the carrier transit time and the trapping probability.

Other innovative semiconductors, such as 2D materials, require investigation. However, their current level of development for use in experiments is still relatively low. As a result, a Blue-sky funding scheme should be applied to support further research in these areas.

WG6 is well aligned with the DRDT3.2 and DRDT3.3 since WBG semiconductors can be used for timing applications due to the high carrier saturation velocity, and their radiation hardness make them suitable materials to be used at extreme fluences with the added advantage that they can be operated without cooling.

573 7.1 Diamond

The high energy physics community has extensively studied diamond as a wide band-gap 574 semiconductor material for sensors; experiments, and accelerators have used diamond-575 based beam conditions monitors successfully for decades. A polycrystalline synthetic 576 diamond (pCVDD) with a wafer charge-collection-distance (CCD) of 400 microns is 577 available today, and the aim is to increase the quality to 500 microns and improve 578 wafer uniformity. Diamond detectors have been tested for radiation hardness and can 579 withstand protons, neutrons, and pions at various energies. However, at a fluence of 580 10^{17} cm⁻² 24 GeV protons, the Schubweg or average distance a carrier traverses before 581 being captured is approximately 16 microns, resulting in a significant reduction in signal 582 efficiency. 3D diamond detectors with a femtosecond laser process to convert diamonds 583 into graphite electrodes can address this problem. The first 3D diamond detector device 584 is planned for use in the ATLAS Phase-II upgrade as a small beam condition monitor, 585 and it represents a stepping stone towards larger area applications needed for future 586 projects like the FCC-hh. Further studies and innovative geometries are needed to com-587 prehensively assess 3D diamond detectors' radiation tolerance. This includes studies 588 of charge multiplication via impact ionization through adapted electrode geometries to 589 improve radiation tolerance and timing performance. 590 591

⁵⁹² 7.2 Wide-band semiconductor

SiC Recently, the use of SiC in power devices has become widespread, and the quality of 593 this material has reached levels comparable to that of silicon. Additionally, 150mm SiC 594 wafers have become standard in the semiconductor industry, and soon 200mm wafers 595 will be introduced to the market. The high-quality material required for SiC sensors is 596 typically epitaxially grown using Chemical Vapour Deposition (CVD), which allows for 597 precise control of crystal film thickness, doping, and homogeneity. Recently, SiC epitaxial 598 layers up to a thickness of 200 μ m have been obtained. However, the material's resistivity 599 must be increased to deplete these layers with reasonable bias voltages. Alternatively, 600 MIP detection in thin layers with reasonable SNR would need signal amplification in the 601 material. 602

In the mid-term, SiC could be used as beam loss and intensity monitors, as well as in medical applications like (micro-)dosimetry and neutron/plasma detection in hightemperature environments.

In the coming years, the main technological challenges for SiC detectors will involve 606 studying the radiation hardness of high-quality materials and understanding the defect 607 traps. This will aid in fabricating more radiation-hard materials and developing reliable 608 simulation tools necessary for designing new detectors and predicting their performance 609 in extreme fluence environments. Recent studies have shown that SiC detectors have 610 better timing performance than silicon detectors, necessitating further research to ex-611 plore the possibility of including a gain layer into the bulk as done for the standard 612 LGAD. A multiplication mechanism in SiC diodes has been observed after neutron irra-613 diation, but it is not yet understood. 614

615

GaN is the most rapidly growing semiconductor material used in industrial appli-616 cations such as telecommunications, power management, high-temperature operation, 617 optoelectronics, and aerospace. However, defects in the GaN crystal, such as disloca-618 tions and unintentional doping, still present a challenge in terms of device-level perfor-619 mance. In the past decade and due to the rapid improvement of material quality of 620 epitaxially grown films, the promise of GaN as a detector material has been demon-621 strated by several groups. Nevertheless, the widespread use of GaN devices in higher 622 radiation environments (HL-LHC and beyond) will require development to improve their 623 radiation hardness, which in turn requires a thorough understanding of the displacement 624 damage and resulting material defects in GaN, and designing devices using predictive 625 models calibrated to irradiated GaN on native substrates and on SiC. This aligns well 626 with developments in the industry where material quality is perceived as the key to the 627 development of fast RF devices with sub-ns resolution (5G and beyond) and monolithic 628 designs of GaN embedded in Si or SiC substrates for fast power switching and nuclear 629 technology applications. 630

631

632 7.3 WG6 Research Goals

⁶³³ The research goals of WG6 are summarized in Table 8.

WG6 research goals <2027							
	Description						
DC 6 1	3D diamond detectors, cages / interconnects, base length 25						
ng 0.1	μm , impact ionization						
DC 6 2	Fabrication of large area SiC and GaN detectors, improve						
ng 0.2	material quality and reduce defect levels.						
RG 6.3	Improve tracking capabilities of WBG materials						
PC 64	Apply graphene and/or other 2D materials in radiation de-						
ng 0.4	tectors, understand signal formation.						

Table 8: WG6 research goals for < 2027

⁶³⁴ 8 WG7: Sensor interconnection techniques

Interconnections are one of the critical aspects of future detector and electronics evolu-635 tion. They have a fundamental role for integrating the sensor and readout ASICs, and in 636 constructing multi-tier electronics. Interconnection technologies enter at different stages 637 of detector construction: from the fast hybridization necessary for the qualification of 638 prototypes to the reliable flip-chip of modules and they need to assure reliable operation 639 for years under stringent radiation, thermal and mechanical specifications. Special in-640 terconnections are also key to resolving specific problems, for example in terms of pitch 641 or mechanical/electrical properties. 642

The goal of the DRD3 interconnection task is to organize the different technological readiness levels of interconnection solutions and the effort towards future advances in the field to match the requirements of future detectors in a coherent and coordinated way.

Very late during the editorial activity of this Research Proposal, it was suggested to add some Mechanics and Advanced Cooling R&D to the interconnection WG. Due to the timing of the request, it was impossible to integrate this in the present document, which will happen in later versions after a discussion with interested institutes in the community. This prospective has anyway been included in the Mapping Tables 11, 12, 13.

8.1 Maskless interconnections: anisotropic conductive films or pastes (ACF, ACP)

Small-pitch hybrid pixel detectors produced with solder bump-bonding techniques are 655 widely used in current and future HEP experiments. The cost of the complex metalliza-656 tion and interconnect processing, performed in highly specialized foundries, dominates 657 the production cost per unit area, and the need to process whole readout wafers domi-658 nates the prototyping costs. In addition, this introduces a long turnaround time during 659 the prototyping phase, where several submissions are made and usually a limited num-660 ber of devices are used for the test. The DRD3 interconnection working package studies 661 technological alternatives to the standard flip-chip techniques to develop fast, possibly 662 in-house, connection processes able to be used for fast testing of new productions, and 663 possibly at the device level. The advantage of avoiding specialized hybridization vendors 664 translates into significant savings of time and money. 665

Interconnection of large-pitch hybrid pixel detectors is also very important. The technologies used in small-pitch interconnection are an overkill in this case, driving to an increase of cost and complexity. Development of a fast, cheap and reliable interconnection process can be very beneficial for these applications.

Anisotropic Conductive Films (ACF) and Anisotropic Conductive Pastes (ACP) are interconnection technologies based on microscopic conductive particles suspended in an adhesive medium, a film, or a paste. Thermocompression of the ACF/ACP between two conductors results in a permanent attachment and a reliable electrical connection only in the direction of the compression. ACF is the dominating interconnect technology

for displays (LCD and OLED) and is widely used also in e.g. camera modules and 675 RFID manufacturing. For the application of HEP pixel detectors, critical parameters 676 such as bonding force, adhesive film thickness, particle material, diameter, and density 677 of particles need to be developed for the specific layout and topology of the respective 678 sensors and readout ASICs. One of the main advantages of these technologies is that 679 they may not require lithographic masks for deposition, are affordable, and can be 680 performed in-house by many laboratories. Processing can happen both at die-to-die and 681 die-to-wafer levels. 682

Additional advanced interconnect technologies such as nano-wires or additive microstructured ink-jet printing will be investigated for specific applications as possible alternatives to conductive adhesives. This study needs to be complemented with an investigation of the radiation resistance of these new technologies.

Relevant short-term (3 years) research goals in this development are (i) consolidate the connection yield necessary for tracking detectors applications; (ii) demonstrate a process optimization that could satisfy pixel pitch of the order of $30\mu m$ or below. In the mid-term (3-6 years), the main research goals are to test and verify (i) the radiation hardness of the process to fluences and doses typical of future experiments at colliders and (ii) the reliability of the technology under the thermal and mechanical specifications determined by the above applications.

8.2 Improvement and diffusion of classical interconnection technolo gies

Classical interconnection techniques provided to High Energy Physics Experiments by 698 commercial vendors and RTOs are nowadays reaching the necessary standards in terms 699 of yields and typical technical specifications but remain expensive and time-consuming 700 processes. The construction of the LHC upgraded trackers for High Luminosity coming 701 in parallel for several detectors on the same timescale also showed that the production 702 capacity of most of these vendors can be easily saturated. Progress can be achieved 703 following two directions. The first is to make the most common interconnection tech-704 niques affordable to existing infrastructure in home laboratories. This can be achieved, 705 for instance, with the introduction of maskless processes. The second is to organize 706 and sponsor the development of advanced processes and the cooperation of commercial 707 vendors and academic groups to address specific complex issues: for example, the need 708 for smaller pixel pitches, the resolution of process temperature constraints, the electri-709 cal properties of interconnections in terms of maximum current or capacitance, or the 710 technique used by industry in the interconnection (die-to-die or die-to-wafer). 711

In the short-term, research goals are the development of maskless post-processing for some of the most standard technologies. In the mid-term, (i) the most standard technologies should be available in full or in part inside specialized academic laboratories and (ii) a device-to-wafer approach to favour the multi project wafer (MPW) submissions, where only a small part of each production wafer is used by a collaboration.

⁶⁹⁴ 695

8.3 3D and vertical integration for High Energy Physics silicon detectors

3D and vertical integration are technologies already largely used in electronics. They 721 are available via industry, and in this way, they profit from the commercial drive coming 722 from consumer electronics. The use in High Energy Physics experiments has already 723 been probed to some extent to merge - for instance - tiers in different technologies. A 724 typical example is a digital layer connected to an analog tier built in a different process. 725 Vertical integration might also have a fundamental role in the integration of different 726 devices which need to be interconnected and that in today's detectors are exchanging 727 data via external solutions such as flexible circuits. The vertical stacking can also allow 728 to contact / power / read a lower tier through an intermediate one with the use, for 729 instance, of specific vias. The interconnection Work Package of DRD3 should coordinate 730 the access to specific industrial processes for laboratories involved in High Energy Physics 731 detectors. While single groups might still be able to deal with secondary industrial actors 732 in the field of vertical integration, the mediation of DRD3 will have a larger chance of 733 success for the involvement of big industrial players, granting continuity and resources. 734 Research goals for the short-term are (i) the demonstration of wafer-to-wafer process in 735 front-end to sensor connection; (ii) the demonstration of the use of TSV to pass power 736 or data through sensors or front-end layers. For the mid- and long-term, the goal is to 737 demonstrate the interconnection capability for post-processed devices. 738

	$ m WG7\ research\ goals\ <2027$							
	Description							
RG 7.1	Yield consolidation for fast interconnections							
BC 7 2	Demonstration of in-house process for single dies and pixel							
116 7.2	interconnections for a range of pitches (down to $< 30 \mu m$)							
PC 7 3	Development of maskless post-processing for classical bump-							
ng 7.5	like interconnection technologies							
PC 74	Development of wafer-to-wafer in presently advanced inter-							
ng 7.4	connection technologies							
PC 75	Development of VIAS in multi-tier sensor/front-end assem-							
103 7.5	blies							

739 8.4 WG7 Research Goals

Table 9: WG7 Research Goals for < 2027

717 718

⁷⁴⁰ 9 WG8: Outreach and dissemination

WG8 aims at promoting outreach and disseminating the activities of the DRD3 collaboration in coordination with other similar international and ECFA activities.

- The WG8 activities can be broadly divided into:
- Disseminating knowledge on solid-state detectors to people working in high-energy physics (training, lectures, mobility)
- Disseminating knowledge on solid-state detectors to high-school students and the general public.

9.1 Disseminating knowledge on solid-state detectors to people work ing in high-energy physics

These activities aim to provide training and disseminate the experimental techniques
 needed in DRD3 activities.

- Organize schools for Ph.D. students and young post-docs on TCAD, FPGA programming, GEANT, AllPix2, SIMDET.
- Organize stages for undergraduate students and promote exchange programs between labs. Financial support might be offered
- Participation in instrumentation schools, offering lectures on DRD3 topics (for example, the CERN or FNAL schools)
- Share knowledge of measurement techniques such as device characterizations using IV, CV characteristics, transient studies using TCT, detector telescopes built using beta sources, handling and measurements of irradiated sensors
- Present DRD3 work at conferences, providing opportunities for young researchers to be speakers at important international conferences.
- Publish papers and proceedings so that the DRD3 activities are documented in printed papers.

One exciting aspect is to create partnerships between established and new laboratories so that the upcoming groups can profit from the accumulated knowledge of the more experienced groups.

The DRD3 website will be the point of entry to advertise all DRD3 activities. It will contain links to the DRDs meetings; it will list opportunities for conferences, stages, and so on. It will also collect documentation on how to perform the various experimental techniques.

9.2 Disseminating knowledge on solid-state detectors to high-school students and the general public

Many of the DRD3 members are engaged in outreach activities at various levels, such as
high-school seminars, hands-on experiments for young students, and community meetings. WG8 aims to collect materials and suggestions for these activities so that it will
be easier for new members to carry on the same activities in new places.

778 9.3 WG8 Research Goals

⁷⁷⁹ The research goals of WG8 are summarized in Table 10.

WG8 research goals <2027							
	Description						
RG 8.1	Design and set-up of the DRD3 web site						
RG 8.2	Collection of the outreach material						
RG 8.3	Set-up and organize schools and exchange programs						
RG 8.4	Set-up of the DRD3 conference committee						

Table 10: WG8 research goals for < 2027

⁷⁸⁰ 10 Relationship between work packages and research goals

Tables 11 - 13 show the various links between the work package and the research goals.

DRDT:		3.1 Monolithic			3	3.2 3.3 4D Extreme		ne	3.4					
		C	MOS	sense	\mathbf{rs}	Tra	Tracking Fluence		e	Intercon.				
	Workpackage:	Spatial resolution	Temporal resolution	Read-out architecture	Radiation Tolerance	3D sensors	LGAD	Wide band-gap materials	Diamond	Silicon	maskless interconnect	in house post-processing	advanced interconnect	mechanics and cooling
	RG Description				1					1		1		
1.1	Spatial resolution: $\leq 3 \ \mu m$ position resolution	х											Х	Х
1.2	Temporal resolution: to- wards 20 ps timing precision		x										x	х
1.3	Readout architectures: to- wards 100 MHz/cm^2 , and 1 GHz/cm^2 with 3D stacked monolithic sensors				х								х	
1.4	Radiation tolerance: towards $10^{16} n_{eq}/cm^2$ NIEL and 500 MRad				х									
2.1	Reduction of pixel cell size for 3D sensors					X					X	Х		X
2.2	3D sensors for timing (50 \times 50 um, < 50 ps)					X					X	Х		Х
2.3	LGAD for 4D tracking < 10 um, < 30 ps, wafer 6" and 8"						Х				х	х		х
2.4	RSD for ToF (Large area, $<$ 30 um, $<$ 30 ps)						Х				X	Х		х
3.1	Build up data sets on radiation-induced defect formation in WBG materials							X	X					
3.2	Develop silicon radiation damage models based on measured point and cluster defects	х	х	X	Х	х	Х			Х				
3.3	Provide measurements and detector radiation damage models for radiation levels faced in HL-LHC operation	x	x	x	x	x	X			х				
3.4	Measure and model the prop- erties of silicon and WBG sensors in the fluence range 10^{16} to 10^{18} n _{eq} cm ⁻²							x	x	х				

Table 11: WG1,2,3: mapping of DRDTs, WPs, and research goals $% \mathcal{W}^{(1)}$

DRDT:		3.1 Monolithic CMOS sensors			3 4 Tra	3.23.34DExtremeTrackingFluence		3.4 Intercon						
				SCHOO	15	114	Kiiig	<u>v</u>				50		
	Workpackage:	Spatial resolution	Temporal resolution	Read-out architecture	Radiation Tolerance	3D sensors	ILGAD	Wide band-gap material	Diamond	Silicon	maskless interconnect	in house post-processing	advanced interconnect	mechanics and cooling
	RG Description													
4.1	Flexible CMOS simulation of 65 nm to test design varia- tions	х	x	x	х									
4.2	Implementation of newly measured semiconductor properties into TCAD and MC simulations tools	х	х	х	х	X	Х	х	x	х				
4.3	Definition of benchmark for validating the radiation dam- age models with measure- ments and different bench- mark models.	Х	X			X	Х	х	x	х				
4.4	Developing of bulk and sur- face model for 10^{16} cm ⁻² < $\Phi_{eq} < 10^{17}$ cm ⁻²							Х	X	х				
4.5	Collate solutions from differ- ent MC tools and develop an algorithm to include adap- tive electric and weighting fields	X	X			X	X							
5.1	Develop TPA-TCT	Х	Х			Х	Х			Х				
5.2	Common infrastructure	Х	Х	Х	Х	Х	Х	Х	Х	Х				
5.3	Networking and training on methods	Х	X	X	Х	X	Х	Х	X	х				

Table 12: WG4,5: mapping of DRDTs, WPs, and research goals

			3	.1		3	5.2 D	3.3 Extromo			3.4			
	DRD1:	С	MOS	senso	rs	Tra	D cking	Fluence			Intercon.			
	Workpackage:	Spatial resolution	Temporal resolution	Read-out architecture	Radiation Tolerance	3D sensors	LGAD	Wide band-gap materials	Diamond	Silicon	maskless interconnect	in house post-processing	advanced interconnect	mechanics and cooling
	RG Description													
6.1	3D diamond detectors, cages / interconnects, base length 25 μ m, impact ionization					X			X					
6.2	Fabrication of large area SiC and GaN detectors, improve material quality and reduce defect levels.							х						
6.3	Improve tracking capabilities of WBG materials					x	Х	х						
6.4	Apply graphene and/or other 2D materials in radiation detectors; understand signal formation.						Х	х		х				
7.1	Yield consolidation for fast interconnections					X	Х				x			
7.2	Demonstration of in-house process for single dies and a range of pitch (down to $<$ $30\mu m$) pixel interconnections					x	х				x	х		
7.3	Development of maskless post-processing for classical bump-like interconnection technologies					x	Х				x	х		
7.4	Develop wafer-to-wafer in presently advanced intercon- nection technologies					X	Х					Х	Х	
7.5	Develop VIAS in multi-tier sensor/front-end assemblies	Х	X	X	X	X	Х					Х	Х	

Table 13: WG6,7: mapping of DRDTs, WPs, and research goals

782 11 DRD3 Resources (2024 - 2026)

783 11.1 List of research goals

Table 14 lists the DRD3 research goals. Additional RGs can be added following the
 request of DRD3 collaborators.

786

	WG1 research goals
RG 1.1	Spatial resolution: $\leq 3 \ \mu m$ position resolution
RG 1.2	Timing resolution: towards 20 ps timing precision
RG 1.3	Readout architectures: towards 100 MHz/cm ² , and 1 GHz/cm ² with
	3D stacked monolithic sensors
RG 1.4	Radiation tolerance: towards $10^{16} n_{eq}/cm^2$ NIEL and 500 MRad
	WG2 research goals
RG 2.1	Reduction of pixel cell size for 3D sensors
RG 2.2	3D sensors for timing $(50 \times 50 \ \mu m, < 50 \ ps)$
RG 2.3	LGAD for 4D tracking $< 10 \ \mu m$, $< 30 \ ps$, wafer 6" and 8"
RG 2.4	RSD for ToF (Large area, $< 30 \ \mu m, < 30 \ ps$)
	WG3 research goals
RG 3.1	Build up data sets on radiation-induced defect formation in WBG ma-
	terials
RG 3.2	Develop silicon radiation damage models based on measured point and
	cluster defects
RG 3.3	Provide measurements and detector radiation damage models for ra-
	diation levels faced in HL-LHC operation
RG 3.4	Measure and model the properties of silicon and WBG sensors in the
	fluence range 10^{10} to 10^{18} n _{eq} cm ⁻²
	WG4 research goals
RG 4.1	Flexible CMOS simulation of 65 nm to test design variations
RG 4.2	Implementation of newly measured semiconductor properties into
	TCAD and MC simulations tools
RG 4.3	Definition of benchmark for validating the radiation damage models
	with measurements and different benchmark models.
RG 4.4	Developing of bulk and surface model for 10^{10} cm ⁻² $< \Phi_{eq} < 10^{17}$ cm ⁻²
RG 4.5	Collate solutions from different MC tools and develop an algorithm to
	include adaptive electric and weighting fields
	WG5 research goals
RG 5.1	Develop TPA-TCT
RG 5.2	Common infrastructure
RG 5.3	Networking and training on methods
	WG6 research goals

RG 6.1	3D diamond detectors, cages / interconnects, base length 25 $\mu {\rm m}$, im-
	pact ionization
RG 6.2	Fabrication of large area SiC and GaN detectors, improve material
	quality and reduce defect levels.
RG 6.3	Improve tracking capabilities of WBG materials
RG 6.4	Apply graphene and/or other 2D materials in radiation detectors un-
	derstand signal formation.
	WG7 research goals
RG 7.1	Yield consolidation for fast interconnections
RG 7.2	Demonstration of in-house process for single dies and a range of pitch
	(down to $<30 \ \mu m$) pixel interconnections
RG 7.3	Development of maskless post-processing for classical bump-like inter-
	connection technologies
RG 7.4	Develop wafer-to-wafer in presently advanced interconnection technolo-
	gies
RG 7.5	Develop VIAS in multi-tier sensor/front-end assemblies
	WG8 research goals
RG 8.1	Design and set-up of the DRD3 web site
RG 8.2	Collection of the outreach material
RG 8.3	Set-up and organize schools and exchange programs
RG 8.4	Set-up of the DRD3 conference committee

Table 14: List of Research goals 2024 - 2026

787 11.2 DRD3 Resources

- ⁷⁸⁸ The questionnaire asked resources for the following two categories:
- Present situation: Resource allocation expected on existing funding lines for the period 2024-26.

• Strategic R&D: Resource allocation coming from the funding requests for strate gic R&D you intend to file.

Table 15 shows the resources available to DRD3.

	P	resent situatio	Strategic R&D			
		Non		Non		
	Permanent	Permanent	Budget	Permanent	Budget	
	[FTE/y]	[FTE/y]	[kCHF/y]	[FTE/y]	[kCHF/y]	
Total	182.27	171.14	5327.5	193.68	8469.25	

Table 15: DRD3 resources	per year in	the period	2014 - 2010
--------------------------	-------------	------------	-------------

⁷⁹⁴ 11.3 Resources for each research goal

⁷⁹⁵ In this section, the resources for each research goal are presented. Table 16 lists the ⁷⁹⁶ resources for each research goal while Figure 8 shows the same information graphically.

	P	resent situation	Strateg	jic R&D	
		Non		Non	
Research	Permanent	Permanent	Budget	Permanent	Budget
goal	[FTE/y]	[FTE/y]	[kCHF/y]	[FTE/y]	[kCHF/y]
1.1	16.5	15.8	531.3	18.2	18.2
1.2	10.8	11.8	354.3	12.4	12.4
1.3	12.1	12.5	397.2	14.0	14.0
1.4	12.5	11.5	412.3	12.7	12.7
Total	52.0	51.5	1695.2	57.3	57.3
2.1	3.4	5.0	83.6	4.8	5.1
2.2	8.5	6.9	266.3	7.1	6.1
2.3	11.9	12.9	328.2	13.7	11.3
2.4	4.9	6.8	145.4	5.0	4.4
Total	28.7	31.6	823.4	30.7	27.0
3.1	3.6	4.2	100.1	3.7	4.3
3.2	4.1	2.5	114.8	5.8	5.7
3.3	9.8	6.7	203.8	6.6	6.6
3.4	7.2	8.4	157.3	8.5	9.1
Total	24.8	21.8	576.0	24.5	25.7

4 1	37	2.9	82.1	3.4	3.4
4.2	5.6	5.6	114.2	6.0	5.9
4.3	2.1	1.7	54.9	2.6	2.5
4.4	4.4	3.3	144.8	3.8	3.8
4.5	1.7	1.8	28.2	1.7	1.9
Total	17.4	15.3	424.2	17.5	17.4
5.1	2.9	2.4	47.8	2.3	2.2
5.2	5.8	5.2	141.9	5.8	6.0
5.3	3.8	3.3	100.8	2.4	2.4
Total	12.6	10.9	290.5	10.4	10.6
6.1	1.5	1.6	47.5	0.9	0.8
6.2	3.9	2.4	160.6	3.8	3.5
6.3	1.8	1.9	146.1	2.8	2.3
6.4	2.5	1.5	20.2	1.6	2.2
Total	9.6	7.5	374.5	9.1	8.8
7.1	2.2	1.1	60.3	3.6	1.9
7.2	3.5	1.9	125.9	4.6	2.6
7.3	3.5	1.7	90.6	4.7	2.6
7.4	4.5	2.9	147.9	4.7	4.9
7.5	1.6	1.3	48.8	1.2	1.9
Total	15.3	8.8	473.4	18.6	14.0
8.1	0.5	0.4	25.2	1.2	0.8
8.2	1.3	1.5	13.6	2.7	1.9
8.3	5.2	4.6	244.2	4.9	5.0
8.4	3.3	2.4	129.9	2.9	2.4
Total	10.3	8.9	413.0	11.6	10.2

Table 16: Resources per year for each research goal in the period 2024 - 2026

Figure 8: Resources per year for each research goal in the period 2024 - 2026

797 11.4 List of working groups

- ⁷⁹⁸ The DRD3 working group list is reported here, as shown in the introduction:
- WG1 Monolithic CMOS Sensors
- WG2 Sensors for Tracking and Calorimetry
- WG3 Radiation damage and extreme fluences
- WG4 Simulation
- WG5 Characterization techniques, facilities
- WG6 Wide bandgap and innovative sensor materials
- WG7 Interconnect and device fabrication
- WG8 Dissemination and outreach

⁸⁰⁷ 11.5 Resources for each working group

⁸⁰⁸ By combining the research goals of the same working group, Figure 9 shows the resources
 ⁸⁰⁹ for each working group.

Figure 9: Resources per year for each working group in the period 2024 - 2026

⁸¹⁰ 12 Path to the DRD3 collaboration

The institutes participating in the proposal must designate a contact person who will serve as a member of the provisional institution board at the time of the submission of the proposal. Additionally, these participating institutions are expected to provide a comprehensive list of individuals involved in the project.

Following the submission of the proposal and before its final approval by the DRDC, 815 the DRD3 proposal team will act as a search committee for the collaboration board chair. 816 The election of the collaboration board chair, utilizing the CERN e-voting system, will 817 occur immediately after the proposal's approval and prior to the inaugural meeting of 818 the collaboration, expected to occur in the first quarter of 2024. This process is essential 819 to establish a functional structure for the collaboration right after its inaugural meeting. 820 The DRD3 proposal team will collaboratively prepare the agenda and program for the 821 inaugural meeting in collaboration with the collaboration board chair. This marks the 822 conclusion of the DRD3 proposal team's mandate. 823

The collaboration board chair will then assemble a search committee responsible for 824 selecting a candidate pool for the role of spokesperson. These candidates will present 825 their vision for the DRD3 collaboration at the kickoff meeting, including proposals for 826 working group conveners. The spokespersons' elections will take place during the kickoff 827 meeting of the collaboration, thereby establishing the operational functionality of the 828 collaboration. The spokespersons and the collaboration board chair will formulate a 829 Memorandum of Understanding (MoU) for the collaboration and guide its formation 830 by overseeing the establishment of all collaboration bodies. During the interim period 831 before the preparation and endorsement of the DRD3 MoU, the DRD3 proposal team 832 advises adhering to the rules outlined in the RD50 MoU. 833

Figure 10: DRD3 organizational chart

⁸³⁴ 12.1 Funding for DRD3 strategic R&D

Funds for the strategic R&D come from national funding agencies and other sources and
belong to the respective institutes. The strategic R&D will be the focus of the DRDC
reviews.

⁸³⁸ 12.2 Funding for DRD3 blue-sky R&D

Each institute will contribute to the DRD3 Blue-sky common fund. The amount of this levy is expected to be initially 2,000 CHF per year. The new DRD3 CB will define the rules for the funding scheme.

⁸⁴² 12.3 Funding for DRD3 operation

Each institute will contribute to the cost of the DRD3 collaboration with the host institution covering most of these costs. These costs include, for example, the personnel for administrating the DRD3 collaboration. The new DRD3 CB will define the amount of this levy. We encourage the DRDC to establish a common secretariat for the DRDs.

⁸⁴⁷ 12.4 Funding presently available in the RD50 collaboration

At the end of 2023, the RD50 collaboration will cease to exist. The funding still present in the RD50 common fund will be transferred to the DRD3 collaboration. This fund will be managed by and available to former RD50 members.

851 13 Annex - I: List of institutions

	Country	Institution	CB representative	Contact
1	Austria	InstitutfürHoch- energiephysikÖsterreichischenÅkademiederWissenschaftenHEPHY Vienna)	Thomas Bergauer	thomas.bergauer @ oeaw.ac.at
2	Brazil	Federal University of Rio Grande do Sul (UFRGS)	Gustavo Gil da Sil- veira	gustavo.silveira@cern.c
3	Brazil	Universidade de São Paulo	Marco Aurelio Lisboa Leite	leite @ cern.ch
4	Canada	Carleton University - Na- tional Research Council	Thomas Koffas, Ryan H. Griffin	Thomas.Koffas @ cern.ch
5	Canada	Simon Fraser University	Bernd Stelzer	stelzer @ sfu.ca
6	Canada	TRIUMF	Oliver Stelzer-Chilton	stelzer-chilton @ tri- umf.ca
7	Chile	Universidad Andrés Bello, SAPHIR Millennium In- stitute of ANID	Sergey Kuleshov	kuleshov @ cern.ch
8	Chile	Universidad Técnico Federico Santa María	Nicolas Viaux	nviauxma @ cern.ch
9	China	Institute of High Energy Physics, CAS	Jianchun Wang	jwang @ ihep.ac.cn
10	China	Ludong University	Li Zheng	3636 @ ldu.edu.cn
11	China	University of Science and Technology of China	Yanwen Liu	yanwen @ ustc.edu.cn
12	Croatia	Ruder Boskovic Institute	Starodumov Andrey	andrey.starodumov @ cern.ch
13	Croatia	University of Zagreb, Fac- ulty of Electrical Engi- neering and Computing, Department of Electron- ics, Micro and Nano Elec- tronics Laboratory	Tomislav Suligoj	tomislav.suligoj @ fer.hr
14	Czech Re- public	Charles University	Peter Kodys	peter.kodys @ mff.cuni.cz
15	Czech Re- public	FNSPE CTU	Michal Marcisovsky	Michal.Marcisovsky @ cern.ch

16	Czech Re- public	Institute of Experimen- tal and Applied Physics, Czech Technical Univer-	Benedikt Bergmann	benedikt.bergmann @ utef.cvut.cz
17	Czech Be-	sity Institute of Physics	Marcela Mikestikova	marcela mikestikova
	public	Czech Academy of Sci- ences, Prague		@ cern.ch
18	Czech Re- public	University of West Bo- hemia	Vjaceslav Georgiev	georg @ fel.zcu.cz
19	Finland	Helsinki Institute of Physics (HIP)	Erik Brücken	jens.brucken @ helsinki.fi
20	Finland	Lappeenranta-Lahti University of Technology (LUT)	Panja Luukka	panja.luukka @ lut.fi
21	France	Aix-Marseille University	Laurent Ottaviani	laurent.ottaviani @ im2np.fr
22	France	CEA-Irfu	Philippe Schwemling	philippe.schwemling @ cea.fr
23	France	CPPM Marseille	Marlon Barbero	barbero @ cppm.in2p3.fr
24	France	IJCLAB	Abdenour Lounis	abdenour.lounis @ ij- clab.in2p3.fr
25	France	Institut pluridisciplinaire Hubert Curien (IPHC)	Auguste Besson	abesson @ in2p3.fr
26	France	IP2I Lyon CNRS/IN2P3	Didier Contardo	contardo $@$ in2p3.fr
27	France	Laboratoire AstroPartic- ule et Cosmologie (APC)	Marco Bomben	marco.bomben @ cern.ch
28	France	Laboratoire de Physique Subatomique et de Cos- mologie LPSC	Marie-Laure Gallin- Martel	mlgallin@lpsc.in2p3.fr
29	France	LPNHE Paris	Giovanni Calderini	giovanni.calderini @ lpnhe.in2p3.fr
30	Germany	University of Freiburg	Ulrich Parzefall	ulrich.parzefall @ cern.ch
31	Germany	CiS Forschungsinstitut für Mikrosensorik GmbH	Thomas Ortlepp	tortlepp @ cismst.de
32	Germany	DESY	Simon Spannagel	simon.spannagel @ desy.de
33	Germany	Fraunhofer IZM	Thomas Fritzsch	thomas.fritzsch @ izm.fraunhofer.de

34	Germany	GSI Helmholtzzentrum	Michael Deveaux	m.deveaux @ gsi.de
		für Schwerionenforschung		
		GmbH		
35	Germany	Halbleiterlabor der Max-	Jelena Ninkovic	ninkovic @ hll.mpg.de
		Planck-Gesellschaft		
36	Germany	Heidelberg, Physics Insti-	Andre Schöning	schoning @ physi.uni-
		tute		heidelberg.de
37	Germany	Physics Institute, Univer-	Arnulf Quadt	aquadt @ uni-
		sity of Goettingen		goettingen.de
38	Germany	Institut für Physik	Cigdem Issever	cigdem.issever @
		Humboldt-Universität zu		physik.hu-berlin.de
		Berlin		
39	Germany	Institute for Experimen-	Jörn Schwandt	joern.schwandt @
		tal Physics, University of		desy.de
		Hamburg		
40	Germany	Karlsruhe Institute of	Alexander Dierlamm	alexander.dierlamm
		Technology (KIT)		@ kit.edu
41	Germany	Max-Planck-Institut	Richard Nisius	Richard.Nisius @
		fur Physik (Werner-		mpp.mpg.de
		Heisenberg-Institut)		
42	Germany	TU Dortmund University,	Jens Weingarten	jens.weingarten @ tu-
		Department of Physics		dortmund.de
43	Germany	University of Bonn,	Jochen Dingfelder	dingfelder @
		Physikalisches Institut		physik.uni-bonn.de
44	Germany	University of Muenster,	Anton Andronic	a.andronic @ gsi.de
		Institut fuer Kernphysik		
45	Greece	Aerospace Science and	Charalambos Pan.	lambrop @ uoa.gr
		Technology Department,	Lambropoulos	
		National and Kapodis-		
		trian University of Athens		
46	Greece	Institute of Nuclear and	Christos Markou	cmarkou @
		Particle Physics National		inp.demokritos.gr
		Center for Scientific Re-		
		search (NCSR) Demokri-		
		tos		
47	Greece	National Technical Uni-	Ioannis Kopsalis	ioannis.kopsalis @
		versity of Athens		cern.ch
48	Greece	University of Ioannina	Costas Foudas	Costas.Fountas @
				cern.ch
49	India	Indian Institute of Tech-	Prafulla Kumar Be-	behera @ iitm.ac.in
		nology Madras	hera	

50	India	National Institute of Sci-	Prolay Mal	prolay.kumar.mal @
		ence Education and Re-		cern.ch
51	India	University of Delhi	Ashutosh Bhardwaj	ashutosh.bhardwaj @ cern.ch
52	Israel	Tel Aviv University	Arie Ruzin	ruzin @ tauex.tau.ac.il
53	Israel	Weizmann Institute of Sci- ence	Noam Tal Hod	noam.hod @ weiz- mann.ac.il
54	Italy	Fondazione Bruno Kessler	Maurizio Boscardin	boscardi @ fbk.eu
55	Italy	INFN and University of Genova	Enrico Robutti	enrico.robutti @ ge.infn.it
56	Italy	INFN = Perugia	Francesco Moscatelli	francesco.moscatelli @ cern.ch
57	Italy	INFN - Torino	Roberta Arcidiacono	roberta.arcidiacono @ to.infn.it
58	Italy	INFN - Trieste	Giacomo Contin	giacomo.contin @ ts.infn.it
59	Italy	INFN - Padova	Rosario Turrisi	rosario.turrisi @ pd.infn.it
60	Italy	INFN - Bari	Donato Maria Cre- anza	donato.creanza @ ba.infn.it
61	Italy	INFN - Firenze	Giacomo Sguazzoni	giacomo.sguazzoni @ fi.infn.it
62	Italy	INFN - Pisa	Francesco Forti	Francesco.Forti @ pi.infn.it
63	Italy	Università di Milano and INFN - Milano	Attilio Andreazza	attilio.andreazza @ mi.infn.it
64	Italy	Universita' degli Studi di Milano - Bicocca and INFN	Simone Gennai	mauro.dinardo@cern.cl
65	Italy	University of Trento and TIFPA-INFN	Lucio Pancheri	lucio.pancheri @ unitn.it
66	Japan	KEK, High Energy Accel- erator Research Organiza- tion	Manabu Togawa	manabu.togawa @ kek.jp
67	Lithuania	Vilnius University, Insti- tute of Photonics and Nanotechnology	Tomas Ceponis	tomas.ceponis @ ff.vu.lt
68	Montenegro	University of Montenegro	Gordana Lastovicka- Medin	gordana.medin @ gmail.com

69	Norway	Department of Physics and Technology, Univer- sity of Bergen	Johan Alme	johan.alme @ uib.no
70	Norway	University of Oslo, De- partment of Physics	Heidi.Sandaker	Heidi.Sandaker @ cern.ch
71	Poland	AGHUniversityofKrakow,FacultyofPhysicsandAppliedComputerScience	Agnieszka Oblakowska-Mucha	Agnieszka.Oblakowska- Mucha @ cern.ch
72	Poland	Institute of Plasma Physics and Laser Micro- fusion	Maryna Chernyshova	maryna.chernyshova @ ipplm.pl
73	Portugal	LIP, Laboratório de In- strumentação e Física Ex- perimental de Partículas	Michele Gallinaro	michgall @ cern.ch
74	Romania	Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering	George Alexandru Nemnes	alexandru.nemnes @ nipne.ro
75	Romania	National Institute of Ma- terials Physics	Ioana Pintilie	ioana @ infim.ro
76	Slovenia	Jožef Stefan Institute (JSI)	Gregor Kramberger	Gregor.Kramberger @ ijs.si
77	Spain	Centro Nacional de Acel- eradores, CNA (Universi- dad de Sevilla, Junta de Andalucía, CSIC)	Carmen Jiménez- Ramos	mcyjr @ us.es
78	Spain	Centro Nacional de Microelectrónica (IMB- CNM-CSIC)	Giulio Pellegrini	giulio.pellegrini @ csic.es
79	Spain	Escuela Técnica Superior de Ingeniería (School of High Engineering), Uni- versity of Sevilla	. Rogelio Palomo Pinto	fpalomo @ us.es
80	Spain	Galician Institute for High Energy Physics (IGFAE)	Abraham Antonio Gallas Torreira	abrahamantonio.gallas @ usc.es
81	Spain	IFIC (CSIC-UV)	Carlos Marinas	cmarinas @ ific.uv.es
82	Spain	Institut de Fisica d'Altes Energies (IFAE)	Sebastian Grinstein	sgrinstein @ ifae.es
83	Spain	Instituto de Física de Cantabria (CSIC-UC)	Ivan Vila Alvarez	ivan.vila @ csic.es

84	Spain	Instituto Tecnológico de Aragón (ITAINNOVA)	Fernando Arteche	farteche @ itain- nova.es
85	Switzerland	CERN	Michael Moll	michael.moll @ cern.ch
86	Switzerland	IPA, ETH Zürich	Malte Backhaus	bmalte @ phys.ethz.ch
87	Switzerland	LHEP, University of Bern	Michele Weber	michele.weber @ cern.ch
88	Switzerland	PSI	Lea Caminada	lea.caminada @ psi.ch
89	Switzerland	University of Zurich	Ben Kilminster	ben.kilminster @ physik.uzh.ch
90	the Nether- lands	Nikhef	Martin van Beuzekom	martinb @ nikhef.nl
91	Türkiye	Ankara University	Ilkay Turk Cakir	ilkay.turk.cakir @ cern.ch
92	Türkiye	Bolu Abant Izzet Baysal University	Haluk DENIZLI	haluk.denizli @ cern.ch
93	Türkiye	IstanbulUniversity-Cerrahpasa,InsistuteofNanotechnologyBiotechnology	Arif Kösemen	arif.kosemen @ iuc.edu.tr
94	United King-	Brunel University London	Liliana Teodorescu	Liliana.Teodorescu @
	dom			brunel.ac.uk
95	United King- dom	Cavendish Laboratory, University of Cambridge	Sarah Williams	Sarah.louise.williams @ cern.ch
96	United King- dom	Daresbury Laboratory, STFC	Roy Lemmon	roy.lemmon @ stfc.ac.uk
97	United King- dom	Glasgow University	Richard Bates	richard.bates @ glas- gow.ac.uk
98	United King- dom	Queen Mary University of London	Ian Dawson	ian.dawson @ cern.ch
99	United King- dom	University of Manchester	Marco Gersabeck	marco.gersabeck @ cern.ch
100	United King- dom	University of Birmingham	Laura Gonella	laura.gonella @ cern.ch
101	United King- dom	University of Bristol	Joel Goldstein	joel.goldstein @ bris- tol.ac.uk
102	United King- dom	University of Edinburgh	Yanyan Gao	yanyan.gao @ ed.ac.uk
103	United King- dom	University of Liverpool	Eva Vilella	vilella @ hep.ph.liv.ac.uk

104	United King-	University of Oxford	Daniela Bortoletto	daniela.bortoletto @
	dom			physics.ox.ac.uk
105	United King-	University of Warwick	Karolos Potamianos	karolos.potamianos @
	dom			cern.ch
106	USA	Argonne National Labora-	Jinlong Zhang	zhangjl @ anl.gov
		tory		
107	USA	Brookhaven Narional Lab-	Alessandro Tricoli	atricoli @ bnl.gov
		oratory		
108	USA	Brown University	Ulrich Heintz	ulrich_heintz @
				brown.edu
109	USA	Fermilab	Artur Apresyan	apresyan @ fnal.gov
110	USA	Los Alamos National Lab-	Xuan Li	xuanli @ lanl.gov
		oratory		
111	USA	Oak Ridge National Labo-	Mathieu Benoit	benoitm @ ORNL.gov
		ratory		
112	USA	Ohio State University	Harris Kagan	kagan.1 @ osu.edu
113	USA	Purdue University	Andreas Jung	anjung @ purdue.edu
114	USA	Santa Cruz Institute for	Tony Affolder	affolder @ ucsc.edu
		Particle Physics (SCIPP)		
		UC Santa Cruz		
115	USA	SLAC National Accelera-	Ariel Schwartzman	sch @
		tor Laboratory	and Caterina Vernieri	slac.stanford.edu
116	USA	Radiological Instrumenta-	Shiva Abbaszadeh	sabbasza @ ucsc.edu
		tion lab., UC Santa Cruz		
117	USA	University of Illinois at	Zhenyu Ye	yezhenyu2003 @
		Chicago		gmail.com
118	USA	University of New Mexico	Sally Seidel	seidel @ unm.edu
119	USA	University of Tennessee-		elukosi @ utk.edu
		Knoxville		

Table 17: List of DRD3 institutions

⁸⁵² 14 Annex - II: DRD3 Proposal Team

G. Calderini¹ N. Cartiglia², G. Casse³, G. Kramberger⁴, M. Moll⁵, I. Pintilie⁶, G. Pellegrini⁷,
 E. Vilella⁸, I. Vila Alvarez⁹

855

¹ LPNHE, CNRS (Paris), ² INFN (Torino), ³University of Liverpool (Liverpool), ⁴
 ⁵ Jozef Stefan Institute (Ljubljana), ⁵ CERN (Geneve), ⁶ National Institute of Materials
 ⁸⁵⁸ Physics (Bucharest), ⁷ Centro Nacional de Microelectronica (Barcelona), ⁸ University of
 ⁸⁵⁹ Liverpool (Liverpool), ⁹ Instituto de Fisica de Cantabria (Santander)

860

The workshop speakers listed in [1] are acknowledged for their significant contributions.

864	• ACF: Anisotropic Conductive Films
865	• ACP: Anisotropic Conductive Pastes
866	• BEOL: Back-End Of Line
867	• BSI: Back-Side Illuminated
868	• CA: Common Area
869	• CP: Common Project
870	• DJ-LGAD: Deep-Junction LGAD
871	• DLTS: Deep Level Transient Spectroscopy
872	• DMAPS: Depleted Monolithic Active Pixel Sensor
873	• DRC: Design Rule Checking
874	• DRDT: Detector R&D Theme
875	• EPR: Electron Paramagnetic Resonance
876	• FD-MAPS: Fully-Depleted Monolithic Active Pixel Sensor
877	• FSI: Front-Side Illuminated
878	• FTIR: Fourier Transform Infrared Spectroscopy
879	• iLGAD: inverted LGAD
880	• iPDK: Interoperable Process Design Kit
881	• LGAD: Low-Gain Avalanche Diode
882	• MAPS: Monolithic Active Pixel Sensor
883	• MC: Monte Carlo
884	• MPW: Multi-Project Wafer
885	• PDK: Process Design Kit
886	• PL: Photo Luminescence
887	• RG: Research Goal
888	• RTO: Research and Technology Organisations
889	• SiC:Silicon Carbide

⁸⁶³ 15 Acronyms used in the proposal

- SoA: Silicon on Aluminum
- TCT: Transient Current Technique
- TI-LGAD: Trench-Isolated LGAD
- TPA: Two-Photon Absorption
- TRIBIC: Time Resolved Ion Beam Induced Currents
- TSC: Thermally Stimulated Currents
- TSCap: Thermally Stimulated Capacitance
- TSV: Through Silicon Vias
- WBS: Wide Band-Gap Seminconductor
- XRD: X-Ray diffraction

900 16 References

901 References

- ⁹⁰² [1] DRD3 group. Implementation of TF3 Solid State detectors. Technical report, 2023.
- [2] ECFA Detector RD Roadmap Process Group. The 2021 ECFA detector research and devel opment roadmap. Technical report, Geneva, 2021.