
Precision agriculture in vineyards
using a low-power wide-area wireless

sensor network

Bruno Casu

Content
● Re-evaluation of WSN requirements
● Using LoRaWAN
● NUCLEO WL55JC1 Project
● Outlook

Re-evaluation of WSN requirements

● S: LoRa End Node: sensore + MCU + transceiver
LoRa + batteria

● G: LoRa Gateway: transceiver LoRa + SoC
ARM/RiscV Linux + Ethernet PHY

● Back End: MQTT broker + database + grafici +
automazione

S

S

S

S

S

G
LoRa MQTT-Br

DB

Graph

Autom

IP

Considerations about the WSN Configuration:

○ Sensor nodes (LoRa End nodes) will attempt to reach the Gateway in one hop.
○ The Gateway will remain in receiver mode, waiting for data frames from the End nodes (the

Gateway will not be battery powered).
○ End nodes will operate in non-beacon mode, transmitting data in a configurable interval.

Re-evaluation of WSN requirements - Environment

● Several hectares of vineyards (from 5 ha up to 20 ha - 20 ha is equivalent of a circular
area with aprox. 500m in diameter). Sensor nodes will be distributed with an average of
30 meter between each node.

● Expected a number of sensors N in the network in the range of 20<N<100.

● Sensor nodes won't be guaranteed to be in line of sight with the Gateway.

● To ensure a high packet delivery ratio, the maximum distance between a sensor node
and the gateway will be of aprox. 1000 meters (the maximum range is an estimate, the
important parameter is the RSSI on the End Nodes - should be at the worst case
-102dBm).

● To avoid Single point of failure (robust) an extra gateway may be used for redundancy.

● Sensor nodes will provide data with an interval of 30 minutes. After the Uplink frame, the
End node will be able to receive a message from the central node application
(configuration, action etc…)

Network Architecture re-evaluation - application scenario

R = 200m

R = 400m

Number of End Nodes: 30

Gateway

End nodes

Network Architecture re-evaluation - LoRa range evaluation
Field test using LoRa Radio with different Spread Factors configuration (Urban and Rural mixed area)

Network Architecture re-evaluation - LoRa range evaluation
Comparative test with 802.15.4 Radio

Test Config:

1. Zolertia re-mote sensor nodes equipped
with omni-directional antennas with 2 dB
gain.

2. Sensor nodes are based on the ARM
Cortex-M3 system on chip (SoC), and runs
the Contiki OS.

3. Texas Instruments CC1120 transceiver,
default configuration for the IEEE 802.15.4g
standard, operating at 868 MHz band, with
2- GFSK modulation.

4. Bit rate 50 Kbps, the receiver sensitivity is
-109 dBm.

Network Architecture re-evaluation
From: A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks

End Nodes density and packet delivery ratio in IEE802.15.4 MAC (default config):

Similar Config to LoRaWAN Class A
device setup (non beacon mode - Power
Management OFF - Gateway always in Rx
mode)

Configuration with Power Management
ON (PAN coordinators are not in
continuous Rx mode)

The low packet delivery ratio is due to
the use of the Contention Access Period
(CAP) with Limited retries (End nodes
compete for channel access using a
slotted CSMA-CA)

For a multihop implementation
(hierarchical WSN), considering that the
PAN coordinator is battery powered,
beacon mode is the standard solution.

Using LoRaWAN
● Star topology network design (End nodes are connected to a gateway, and can reach it in one

hop).
● Optimized for low power (duty cycling and access layer protocol are provided).
● High network capacity and minimal infrastructure (many sensor nodes can be handled by one

gateway).
● Supports Firmware upgrade over-the-air (FUOTA) for applications.
● Provides secure encrypted communication.
● Software is under an Open Source license agreement.

WSN architecture - LoRaWAN

● LoRaWAN End Node Classes:
○ Class A - Operate in Non Beacon Mode, sending data with a set interval. Most efficient

implementation considering power consumption and duty cycling.

Gateway

Sensor data ACK, CFG, etc.

WSN architecture - LoRaWAN

● LoRaWAN End Node Classes:
○ Class B - These devices operate in Beacon Enabled mode. This allows End nodes to synchronize a

downlink slot (may improve system response time, if actions in the field are required with lower
latency). Uplink works the same as Class A devices.

○ Class C - These devices must always remain active (NOT suited for our application scenario).

WSN architecture - LoRaWAN

LoRa protocol stack

STM32 Nucleo firmware

 WSN architecture - Additional functionalities
Some additional functionalities could be added in the Application layer to handle possible adverse scenarios:

● When the Uplink connection is not established during the time frame (adverse environment
conditions, or possible collisions with other nodes), the application layer should be able to
retransmit sensor data. Possible implementations:

○ Retention of latest sensor readings: when the uplink connection fails, the current
sensor data is stored in memory, and added to the next frame to be sent (no
retransmission attempts). This can be recurred up to the limit of the frame size.

○ Retransmission period: The End node could automatically reduce its Standby period
and retry the Uplink communication (set by a random value).

■ Retries outside the standard Uplink frame will increase power consumption, but can
increase overall packet delivery ratio.

WSN architecture - Additional functionalities
● LoRaWAN Class A devices are described as “not suited for actuators”.

○ To add actuation capabilities in the sensor nodes, an application can be developed for
the End Nodes to process the readings locally and evaluate the necessity
countermeasures. The thresholds can be configured and set remotely allowing a central
application to update the parameters.

○ Alternatively, the sensor nodes can be reconfigured once a central monitoring application
detects possible risk scenarios. When reconfigured, the End nodes will change its duty
cycle to send data more frequently, allowing the central application to issue an Action
Command in the Rx slots available in the Class A transmission frame.

NUCLEO WL55JC1 Project
● Using STM32Cube_FW_WL_V1.3.0 software package. Already contains LoRaWAN and FreeRTOS

Middleware, BSP drivers, SX1276 Drivers and ready to use examples.

● Project Setup: DualCore mode with FreeRTOS

Some remarks:

- Core M4 project contains the lora app and configurations. The scheduler is initialized on Core M4, but
the LoraWAN task runs on Core M0+. After boot, Core M4 can be set to Standby mode.

- Basic Lora app configs:

- APP_TX_DUTYCYCLE 10000 // 10s

- ACTIVE_REGION LORAMAC_REGION_EU868

- LORAWAN_DEFAULT_CLASS CLASS_A

- LORAWAN_APP_DATA_BUFFER_MAX_SIZE 242

NUCLEO WL55JC1 Project - basic operation
void LoRaWAN_Init(void)

Thd_LoraSendProcessId = osThreadNew(Thd_LoraSendProcess, NULL, &Thd_LoraSendProcess_attr);
UTIL_TIMER_Create(&TxTimer, TxPeriodicity, UTIL_TIMER_ONESHOT, OnTxTimerEvent, NULL);
UTIL_TIMER_Start(&TxTimer);

static void Thd_LoraSendProcess(void *argument)

Main thread
Scheduler start

osThreadFlagsWait(1, osFlagsWaitAny, osWaitForever);
SendTxData();

static void
OnTxTimerEvent(

void *context)

callback

Set flag
Reset timer

static void SendTxData(void)

humidity = (uint16_t)(sensor_data.humidity * 10); /* in %*10 */
temperature = (int16_t)(sensor_data.temperature);
pressure = (uint16_t)(sensor_data.pressure * 100 / 10); /* in hPa / 10 */
AppData.Buffer = sensor_data…
status = LmHandlerSend(&AppData, LmHandlerParams.IsTxConfirmed, false);

RTC Count =
TxPeriodicity

NUCLEO WL55JC1 Project - Logs from the Serial interface

0s048:TX on freq 868300000 Hz at DR 0
1s534:MAC txDone
6s566:RX_1 on freq 868300000 Hz at DR 0
6s764:IRQ_RX_TX_TIMEOUT
6s764:MAC rxTimeOut
7s566:RX_2 on freq 869525000 Hz at DR 0
7s764:IRQ_RX_TX_TIMEOUT
7s764:MAC rxTimeOut

= JOIN FAILED
10s051:VDDA: 254
10s051:temp: 23
10s056:TX on freq 868500000 Hz at DR 0
11s541:MAC txDone
16s574:RX_1 on freq 868500000 Hz at DR 0
16s772:IRQ_RX_TX_TIMEOUT
16s772:MAC rxTimeOut
17s574:RX_2 on freq 869525000 Hz at DR 0
17s772:IRQ_RX_TX_TIMEOUT
17s772:MAC rxTimeOut

= JOIN FAILED

CM0PLUS : Lora registration done
M4_APP_VERSION: V1.3.0
M0PLUS_APP_VERSION: V1.3.0
MW_LORAWAN_VERSION: V2.5.0
MW_RADIO_VERSION: V1.3.0
L2_SPEC_VERSION: V1.0.4
RP_SPEC_VERSION: V2-1.0.1
AppKey:
2B:7E:15:16:28:AE:D2:A6:AB:F7:15:88:09:CF:4F:3C
NwkKey:
2B:7E:15:16:28:AE:D2:A6:AB:F7:15:88:09:CF:4F:3C
AppSKey:
2B:7E:15:16:28:AE:D2:A6:AB:F7:15:88:09:CF:4F:3C
NwkSKey:
2B:7E:15:16:28:AE:D2:A6:AB:F7:15:88:09:CF:4F:3C
DevEUI: 00:80:E1:15:00:0A:90:39
AppEUI: 01:01:01:01:01:01:01:01
DevAddr: 00:0A:90:39
KMS ENABLED

First JOIN attempt

Battery level
Temperature reading

Board Initialization Log

RX1 window

RX2 windowDutyCycle
10s

New Transmission
attempt

Outlook
● All the LoRaWAN network configurations are already set by the software

package. The only necessary software for the NUCLEO End node is the
application layer.

● The example is already running, next step is to setup and test the Gateway
(Dragino Board).

● Choose a sensor to deploy with the NUCLEO End node - possibly BMP280
(temperature + pressure).

● For the Database to be implemented a document database is suited for sensor
data applications (MongoDB + Grafana is a possible solution).

Backup

Duty Cycle reconfigured for 30s

Backup

Backup
Very large open field scenario - The
developed End nodes may not be able to
communicate in such scenario.

Gateway could be moved to a central
position.

