

The <u>HALHF</u> concept: A Hybrid, Asymmetric, Linear Higgs Factory

Combining the strengths of RF and plasma-based accelerators

Dr. Carl A. Lindstrøm

Department of Physics, University of Oslo

12 July 2023 Community Report on Accelerators Roadmap Frascati, Italy

Toward a credible plasma-based e+e- collider

>Several proposals over the past decades:

>Rosenzweig et al. (1996)

>Pei et al. (2009)

Schroeder et al. (2010)

>Adli et al. (2013)

Source: Pei et al., Proc. PAC (2009)

Source: Adli et al., Proc. Snowmass (2013)

Toward a credible plasma-based e⁺e⁻ collider

>Several proposals over the past decades:

>Rosenzweig et al. (1996)

>Pei et al. (2009)

Schroeder et al. (2010)

>Adli et al. (2013)

>Very useful exercises to focus the R&D

>Some key topics have been identified:

>Positron acceleration

>Energy efficiency

Source: Pei et al., Proc. PAC (2009)

Source: Adli et al., Proc. Snowmass (2013)

The HALHF strategy: Design based on current constraints

> Design decision #1: only accelerate electrons in plasma (and positrons using RF)

- > Plasmas are charge asymmetric \rightarrow e⁻ acceleration does not imply e⁺ acceleration.
- > e⁺ acceleration schemes exist, but are not currently both efficient and quality-preserving.

The HALHF strategy: **Design based on current constraints**

> Design decision #1: only accelerate electrons in plasma (and positrons using RF)

- > Plasmas are charge asymmetric \rightarrow e⁻ acceleration does not imply e⁺ acceleration.
- > e⁺ acceleration schemes exist, but are not currently both efficient and quality-preserving.

> Design decision #2: use electron bunches to drive the plasma wakefields

- > CLIC demonstrates that electrons can be produced efficiently.
- > PWFA experiments have shown high energy-transfer efficiency.

The HALHF strategy: **Design based on current constraints**

> Design decision #1: only accelerate electrons in plasma (and positrons using RF)

> Design decision #2: use electron bunches to drive the plasma wakefields > CLIC demonstrates that electrons can be produced efficiently. > PWFA experiments have shown high energy-transfer efficiency.

UNIVERSITY

OF OSLO

> Promising ideas for positron acceleration (Diederichs et al. +++)

> Promising developments toward high-efficiency lasers: fibre-lasers, BAT, etc.

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

- > Plasmas are charge asymmetric \rightarrow e⁻ acceleration does not imply e⁺ acceleration.
- > e⁺ acceleration schemes exist, but are not currently both efficient and quality-preserving.

> The basis of these decisions could change in the near future (with continued R&D):

Can we use asymmetric e⁺/e⁻ energies?

>Minimum centre-of-mass energy required for Higgs factory: √s ≈ 250 GeV

>Electron (E_e) and positron energies (E_p) must follow: >However, the collision products are boosted (γ):

 $E_e E_p = s/4$ $\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right)$

Can we use asymmetric e⁺/e⁻ energies?

>Minimum centre-of-mass energy required for Higgs factory: √s ≈ 250 GeV

>Electron (E_e) and positron energies (E_p) must follow: >However, the collision products are boosted (γ):

>A reasonable choice is: >Electrons (from PWFA): >Positrons (from RF accelerator): >Boost: (HERA had a boost of $\gamma \approx 3$)

UNIVERSITY

OF OSLO

$$E_e E_p = s/4$$
$$\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right)$$

 $E_e = 500 \text{ GeV}$ (4 times higher) $E_p = 31 \text{ GeV}$ (4 times lower) y = 2.13

Simulating asymmetric e⁺/e⁻ collisions

>GUINEA-PIG beam-beam simulations: **>Asymmetric energies give similar luminosity**

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13

(Use shorter bunches to match for smaller IP beta functions)

>However, more power is required (to boost the collision products)

Mitigating the power efficiency problem: asymmetric charge

>The luminosity scales as: $\mathscr{L} \sim N_p N_e$ >Can we use more (low-energy) positrons and less (high-energy) electrons? Yes

>Power usage increase: $\frac{P}{P_0} = \frac{N_e E_e + N_p E_p}{N\sqrt{s}}$

Mitigating the power efficiency problem: asymmetric charge

>The luminosity scales as: $\mathscr{L} \sim N_p N_e$ >Can we use more (low-energy) positrons and less (high-energy) electrons?

>Power usage increase: $\frac{P}{P_0} = \frac{N_e}{P_0}$

>Unchanged power usage if $N_e/N_p = E_p/E_e$ (in our case: 4x more e⁺, 4x less e⁻) >However, producing positrons is problematic—instead go for 2 times more e⁺

E (GeV)	$\sigma_z~(\mathrm{\mu m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} \ (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} \; (\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25

UNIVERSITY OF OSLO

Yes

$$\frac{E_e + N_p E_p}{N\sqrt{s}}$$

Going all-in: Asymmetric emittances ease beam-quality needs

> Geometric emittance scales inversely with energy.

> To achieve same beam size at IP:

> Positrons (lower energy) must have smaller IP beta function: use 3.3/0.1 mm (similar to CLIC)

Going all-in: Asymmetric emittances ease beam-quality needs

> Geometric emittance scales inversely with energy.

- > To achieve same beam size at IP:
 - > Positrons (lower energy) must have smaller IP beta function: use 3.3/0.1 mm (similar to CLIC)

> However, electrons can have a larger IP beta function

> More interestingly, we can increase the e⁻ (normalised) emittance.

> Significantly reduces emittance requirements from PWFAs!

E (GeV)	$\sigma_z~(\mu{ m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \; (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

UNIVERSITY OF OSLO

Schematic layout of HALHF

>Overall length: $\sim 3.3 \text{ km} \Rightarrow$ fits in $\sim any$ major particle-physics lab

_ength dominated by e⁻ beam-delivery system

Source: Foster, D'Arcy & Lindstrøm, preprint at arXiv:2303.10150 (2023)

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible—not exact.

> European accounting (2022 \$): **~\$1.9B** (**~1/4 of ILC TDR cost** @ 250 GeV)

> US accounting ("total project cost"): **\$2.3–3.9B**

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	$\cos t$		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^{e}$	1	80	5%
Civil engineering	$2,\!055$	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

> Dominated by conventional collider costs (97%) - PWFA linac only ~3% of the cost

UNIVERSITY **OF OSLO**

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible—not exact.

> European accounting (2022 \$): **~\$1.9B** (**~1/4 of ILC TDR cost** @ 250 GeV)

> US accounting ("total project cost"): **\$2.3–3.9B**

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	cost		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^{e}$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

> Dominated by conventional collider costs (97%) — PWFA linac only ~3% of the cost > Estimated **power usage is ~100 MW** (similar to same-energy ILC and CLIC): > 21 MW beam power + 27 MW power loss + 2 x 10 MW damping rings + 50% facility overhead

UNIVERSITY **OF OSLO**

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

The foundation: A main RF linac

>Length = ~ 1.3 km / gradient = 25 MV/m >Assumes 50% efficient acceleration

Electron source e 7₊━ RF linac (5 GeV e⁻)

RF linac parameters		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	\mathbf{MW}	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20

The foundation: A main RF linac

>Length = ~1.3 km / gradient = 25 MV/m >Assumes 50% efficient acceleration >Bunch-train pattern must be compatible with PWFA (both NCRF/SCRF possible): *>Burst-mode (100 bunch-train at 100 Hz)* >Continuous wave (10 kHz)

RF linac parameters		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	\mathbf{MW}	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20

Possible bunch-train pattern for HALHF.

The novelty: A multistage plasma-based linac

>No damping ring required (due to high-emittance electrons)

Turn-around loops (31 GeV e⁺/drivers)

Plasma-accelerator linac (16 stages, ~32 GeV per stage)

PWFA linac parameters		
Number of stages		16
Plasma density	cm^{-3}	$1.5 imes10^{16}$
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	m	5
Energy gain per stage ^a	GeV	31.9
Initial injection energy	GeV	5
Driver energy	GeV	31.25
Driver bunch population	10^{10}	2.7
Driver bunch length (rms)	$\mu { m m}$	27.6
Driver average beam power	MW	21.4
Driver bunch separation	\mathbf{ns}	5
Driver-to-wake efficiency	%	74
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	39
Wall-plug-to-beam efficiency	%	19.5
Cooling req. per stage length	kW/m	100

The novelty: A multistage plasma-based linac

>No damping ring required (due to high-emittance electrons) >16 PWFA stages (each 5 m long)

>Length: ~400 m total (80 m of plasma) >Gradient: 6.4 GV/m (in plasma) / 1.2 GV/m (average) >Energy efficiency: 39% (74% driver-to-plasma, 53% plasma-to-beam)

Turn-around loops (31 GeV e⁺/drivers)

(16 stages, ~32 GeV per stage)

PWFA linac parameters		
Number of stages		16
Plasma density	cm^{-3}	$1.5 imes 10^{16}$
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	m	5
Energy gain per stage ^a	${\rm GeV}$	31.9
Initial injection energy	${\rm GeV}$	5
Driver energy	${\rm GeV}$	31.25
Driver bunch population	10^{10}	2.7
Driver bunch length (rms)	$\mu{ m m}$	27.6
Driver average beam power	MW	21.4
Driver bunch separation	\mathbf{ns}	5
Driver-to-wake efficiency	%	74
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	39
Wall-plug-to-beam efficiency	%	19.5
Cooling req. per stage length	kW/m	100
Wall-plug-to-beam efficiency Cooling req. per stage length	% kW/m	$\begin{array}{c} 19.5 \\ 100 \end{array}$

The novelty: A multistage plasma-based linac

>No damping ring required (due to high-emittance electrons) >16 PWFA stages (each 5 m long)

>Length: ~400 m total (80 m of plasma)

>Gradient: 6.4 GV/m (in plasma) / 1.2 GV/m (average)

>Energy efficiency: 39%

Key R&D topic: **Energy-efficiency vs. instab**

Several promising mitigation strategies exist (ion motion, quasi-linear regime, etc.)

More detailed study required to determine stable and self-consistent parameters → pre-CDR

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

Turn-around loops (31 GeV e⁺/drivers)

(74% driver-to-plasma, 53% plasma-to-beam)

	Π		V7
		Ч	

PWFA linac parameters		
Number of stages		16
Plasma density	cm^{-3}	$1.5 imes10^{16}$
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	m	5
Energy gain per stage ^a	GeV	31.9
Initial injection energy	GeV	5
Driver energy	GeV	31.25
Driver bunch population	10^{10}	2.7
Driver bunch length (rms)	$\mu{ m m}$	27.6
Driver average beam power	MW	21.4
Driver bunch separation	\mathbf{ns}	5
Driver-to-wake efficiency	%	74
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	39
Wall-plug-to-beam efficiency	%	19.5
Cooling req. per stage length	kW/m	100

Innovations required: Plasma-accelerator R&D

> Toward high energy:

> Multi-stage driver distribution

From: Pfingstner et al. (Proc. IPAC 2016)

UNIVERSITY **OF OSLO**

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

From: Steinke et al., Nature 530, 190 (2016).

Innovations required: Plasma-accelerator R&D

>Toward high energy:

>Multi-stage driver distribution

> Toward high beam quality:

> Transverse and longitudinal stability

> Spin-polarization preservation

From: Vieira et al. PR-STAB 14, 071303 (2011)

UNIVERSITY OF OSLO

Innovations required: Plasma-accelerator R&D

>Toward high energy:

>Compact staging optics with quality preservation

> Multi-stage driver distribution

>Toward high beam quality:

>Transverse and longitudinal stability

- >Emittance and energy-spread preservation
- > Spin-polarization preservation
- > Toward high beam power:
 - > High-overall efficiency (wall-plug to beam)
 - > Repetition rate
 - > Plasma-cell cooling

>High-charge positron source (2x charge compared to ILC)

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

Sketch of ILC positron source

>High-charge positron source (2x charge compared to ILC) > Detector optimised for asymmetric energies (see Brian's talk)

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

ZEUS detector at HERA

>High-charge positron source (2x charge compared to ILC) > Detector optimised for asymmetric energies (see Brian's talk) >Beam-delivery systems: >Small beta functions (3.3 x 0.1 mm)

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

From: Raimondi & Servi, PRL 86, 3779 (2001)

>High-charge positron source (2x charge compared to ILC) > Detector optimised for asymmetric energies (see Brian's talk) >Beam-delivery systems: >Small beta functions (3.3 x 0.1 mm)

>High-efficiency (heavily beam loaded) RF linac with PWFA-compatible beams

Conventional accelerator expertise required!

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 12 July 2023 | Community Report on Accelerators Roadmap | Frascati, Italy

>Can it be made shorter if the emittance is much higher? (Not assumed for HALHF)

Rough timeline for HALHF (and beyond)

> A "pre-CDR" (feasibility study) is necessary to find self-consistent parameters

	Time	line (a	
0–5 years	5–10 years		
Pre-CDR (HALHF) Simulation study to determine self-consistent parameters	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive)	Multist Stron	
	Demonstration of High wall-plug efficiency (e ⁻ drivers), prese polarization, high rep. rate, plasma tempora		
(demonstration goals)	Energy-efficient positron ultra-low emittances, e	accelerat energy re	

UNIVERSITY **OF OSLO**

Rough timeline for HALHF (and beyond)

> A "pre-CDR" (feasibility study) is necessary to find self-consistent parameters

> Need a near-term technology demonstrator (similar to EU-XFEL for ILC): e.g. strong-field QED > In parallel (not directly relevant to HEP): Plasma-based FELs (EuPRAXIA, KALDERA, etc.)

Timeline (approximate/aspirational)						
0–5 years	5–10 years	10–15 years 15–25 years		25+ years		
Pre-CDR (HALHF) Simulation study	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive) Demonst	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e ⁻)	(Facility upgrade) Higgs factory (HALHF)	Feasibility study R&D (exp. & theory) HEP facility (earliest start of construction)		
to determine self-consistent parameters	High wall-plug efficiency (e- drivers), preserved beam quality & spin polarization, high rep. rate, plasma temporal uniformity & cell cooling		Asymmetric, plasma–RF hybrid collider (250–380 GeV c.o.m.)	(Facility upgrade)		
(demonstration goals)	Demonstration of: Energy-efficient positron acceleration in plasma, high wall-plug efficiency (laser drivers), ultra-low emittances, energy recovery schemes, compact beam-delivery systems			Multi-TeV e+-e-/γ-γ collider Symmetric, all-plasma-based collider (> 2 TeV c.o.m.)		

UNIVERSITY **OF OSLO**

Rough timeline for HALHF (and beyond)

> A "pre-CDR" (feasibility study) is necessary to find self-consistent parameters

> Need a near-term technology demonstrator (similar to EU-XFEL for ILC): e.g. strong-field QED > In parallel (not directly relevant to HEP): Plasma-based FELs (EuPRAXIA, KALDERA, etc.)

Timeline			
0–5 years	5–10 years		
	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive)	Multist Stron	
Simulation study to determine self-consistent parameters (demonstration goals)	Demonstration of High wall-plug efficiency (e ⁻ drivers), prese polarization, high rep. rate, plasma tempora		
	Energy-efficient positron ultra-low emittances,	accelerat energy re	

Jpgrade path toward multi-TeV relies on concepts that need **ongoing parallel R&D** > e⁺ acceleration, high-efficiency lasers, nm-level emittances, more compact BDS

UNIVERSITY **OF OSLO**

Important note: Most R&D toward HALHF is driver-agnostic

>Key to continue funding existing plasma-accelerator test facilities (regardless of driver technology)

>Most R&D can be performed independent of driver used

>Too many R&D topics for one facility to focus on simultaneously

>If high-efficiency lasers become available, these can be highly relevant to multi-TeV colliders

UNIVERSITY

OF OSLO

		Timeline (approximate/aspirational)				
		0–10 years	10–20 years	20–30 years		
		Demonstration of: Preserved beam quality, acceleration in very long plasmas, plasma uniformity (longitudinal & transverse)	Fixed-target experiment (AWAKE) Dark-photon search, strong-field QED experiment, etc. (50–200 GeV e ⁻)	(Facility upgrade)		
			Demonstration of: Use of LHC beams, TeV acceleration, beam delivery	Energy-frontier collider 10 TeV c.o.m. electron–proton col		

proton-driver

Multista

or laser-driv

		Timeline (approximate/aspirational)			
	0–5 years	5–10 years	10–15 years	15–25 years	25+ yea
ge rs	Pre-CDR (HALHF) Simulation study to determine	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive) Demonst High wall-plug efficiency (e- driver	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e ⁻) ration of: rs), preserved beam quality & spin	(Facility upgrade) Higgs factory (HALHF) Asymmetric, plasma–RF hybrid	Feasibility s R&D (exp. & HEP facility of construct
en m)	self-consistent parameters (demonstration goals)	polarization, high rep. rate, plasma temporal uniformity & cell cooling		collider (250–380 GeV c.o.m.)	(Facility upgrade)
		Energy-efficient positron a ultra-low emittances, e	Multi-TeV e⁺–e⁻/γ Symmetric, all-pla collider (> 2 Te		

Important note: Most R&D toward HALHF is driver-agnostic

>Key to continue funding existing plasma-accelerator test facilities (regardless of driver technology)

>Most R&D can be performed independent of driver used

>Too many R&D topics for one facility to focus on simultaneously

If high-efficiency lasers become available, these can be highly relevant to multi-TeV colliders

	Demonstrable in Single Stage			Demonstrable in Multi-stage	
R&D required for future colliders	Proton-driven	Electron-driven	Laser-driven	Electron-driven	Laser-driven
Electron beams with HEP relevant energies	3.2			1.1, 1.2	1.3
Acceleration in very long plasma	3.2				
Plasma uniformity (long. & trans.)	3.2	3.1, 2.3	2.3, 2.4		
Preserving injected beam quality: emittance, charge, energy spread, spin polarisation		3.1	1.5, 2.4	3.1	1.5, 2.4
Stabilisation (active and passive)		3.1	2.4	3.1	2.4
Ultra-low emittance beams					
Advanced beam-delivery systems	1.6	1.6	1.6	1.6	1.6
External injection and timing		3.1	2.4	3.1	2.4
Positron beams for collider	1.4	1.4	1.4		
High rep-rate targetry with heat management		2.3, 3.1	2.1, 2.3, 2.4		
Facility sustainability	1.7	1.7	1.7	1.7	1.7
Temporal plasma uniformity & stability	3.2				
Driver removal		3.1	2.4	3.1	2.4
High rep-rate, high wall plug efficiency drivers			2.1, 2.2		2.1, 2.2
Inter-stage beam coupling and timing				3.1	2.4
Driver coupling and removal (plasma mirrors)				3.1	2.4
Total system design with end-to-end simulations				1.1, 1.2	1.3

Not applicable Not feasible Not part of the program

Page 33

echnically feasible

Conclusions

> The HALHF concept proposes a compact, more cost-effective Higgs factory:

> Asymmetric energy (for compactness), asymmetric charge (for power efficiency), and asymmetric emittance (for reduced requirements)

Conclusions

> The HALHF concept proposes a compact, more cost-effective Higgs factory:

> Asymmetric energy (for compactness), asymmetric charge (for power efficiency), and asymmetric emittance (for reduced requirements)

> Higher risk, but also higher reward (innovative and cost effective):

- > HALHF aims to increase the TRL of plasma-based accelerators, but is currently not at the level of ILC/CLIC or even FCC.
- > Part of a longer-term technology development of plasma-accelerators

Conclusions

UNIVERSITY

OF OSLO

> The HALHF concept proposes a compact, more cost-effective Higgs factory:

> Asymmetric energy (for compactness), asymmetric charge (for power efficiency), and asymmetric emittance (for reduced requirements)

> Higher risk, but also higher reward (innovative and cost effective):

- > HALHF aims to increase the TRL of plasma-based accelerators, but is currently not at the level of ILC/CLIC or even FCC.
- > Part of a longer-term technology development of plasma-accelerators

> Much targeted R&D still required (e.g., staging, beam quality, beam power)

> Continued funding of existing test facilities (regardless of driver technology) is key

