

Community Report on Accelerators Roadmap LNF – July 13, 2023

RF implications for the muon collider program Nadia Pastrone

Thanks to many colleagues for the material, discussions and the future! Errors are only mine...

Input to EU Strategy of Particle Physics

J.P. Delahaye et al.

Input Document to EU Strategy Update - Dec 2018:

"Muon Colliders," <u>arXiv:1901.06150</u> by CERN-WG on Muon Colliders

Colliders timescale after Snowmass 2021

It's not a new idea! New technologies are available.....

A brief history of muon colliders

(A wholly incomplete timeline)

Advances in detector and accelerator pair with the opportunities of the physics case

A unique facility to probe unprecedented energy scales and many different directions at once!

High-rate High-energy Direct searches measurements probes Pair production, Single Higgs, Di-boson, di-fermion, Resonances, VBF, self coupling, rare and tri-boson, EFT, Dark Matter, ...

exotic Higgs decays, compositeness, ... top quarks, ...

Muon physics

Lepton Flavor Universality, $b \rightarrow s \mu \mu$, muon g-2, ...

EU Strategy - Accelerator R&D Roadmap

European Strategy Update – June 19, 2020: High-priority future initiatives [..] In addition to the high field magnets the **accelerator R&D roadmap** could contain:

[..] an **international design study** for a **muon collider**, as it represents a **unique opportunity** to achieve a *multi-TeV energy domain* beyond the reach of e⁺e⁻colliders, and potentially within a more compact circular *tunnel* than for a hadron collider.

The **biggest challenge** remains to produce an intense beam of cooled muons, but *novel ideas are being explored*.

CERN Laboratory Directors Group (LDG) established an Accelerator R&D roadmap to carry out R&D and construction and operation of demonstrators

The compelling physics reach justifies establishment of an international collaboration to develop fully the muon collider design study and to pursue R&D priorities, according to an agreed upon work plan.

To facilitate implemention of the European Strategy LDG decided (July 2 2020) to: Agree to start building the collaboration for international muon collider design study

July 3rd, 2020 International Muon Collider Collaboration kick-off virtual meeting

(>260 participants) https://indico.cern.ch/event/930508/

High-priority future

initiatives

International Design Study facility

• Focus on two energy ranges:

Proton driver production as baseline

- technology ready for construction in 10-20 years TeV 3
- **10+ TeV** with more advanced technology

Roadmap – timescale

The panel has identified a development path that can address the major challenges and deliver a 3 TeV muon collider by the end of HL-LHC (2045)

Scenarios

Aspira	itional	Min	imal					
[FTEy]	[kCHF]	[FTEy]	[kCHF]					
445.9	11875	193	2445					
~70 Me	eu/5 yea	rs						
Accelerator R&D Roadmap Detector R&D Roadmap								

Label	Begin	End	Description	Aspira	Aspirational		Minimal	
				[FTEy]	[kCHF]	[FTEy]	[kCHF]	
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300	
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0	
			gation system					
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0	
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0	
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0	
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0	
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0	
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0	
MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0	
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0	
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0	
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520	
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0	
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0	
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0	
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100	
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250	
MC.TAR	2022	2026	Target system	60	1405	9	25	
MC.INT	2022	2026	Coordination and	13	1250	13	1250	
			integration			7		
			Sum	445.9	11875	193	2445	

Plan for next 5 years

Exploratory Pha	ase	Definition Phas	se					
2021	2021 2022		2024	2025				
Tentativ	ve parameters							
	Exploring options and preparation							
	 Source and collider-complex design Limited programme of prototyping 							
	Cooling D	emonstrator desig	n					
			Per Do	rformance and cumentation				
Explore design Identify critities Explore and Make design 	cal issues prioritise issues n choices	Define design Address fea Develop de Develop R& 	sibility issues sign, refine cho D programme	ices to				
 Define realist 	stic goals	demonstrat	e performance	S				

- End-to-end design with all systems
- Key performance specifications
- Evidence to achieve luminosity goal:
- beam parameters, collective effects, tolerances ...
- Evidence that the design is realistic:
- performance specification supported by technology
- key hardware performances
- radiation protection, impact and mitigation of losses
- cost and power scale, site considerations
- A path forward
- <mark>Test facility</mark>
- Component development
- Beam tests
- System optimisation

Proton-driven Muon Collider Concept

U.S. Muon Accelerator Program (MAP)

http://map.fnal.gov/ MUON JINST collection

RF system challenges

Alexej Grudiev (CERN) – Technology for future HEP facilities, July 2021

Normal conducting RF for capture and cooling

- High-gradient cavities in high magnetic field
- High charge, Huge beam size, Important beam losses
- Peak RF power
- Little synergy with other projects

6D ionizing cooling

- High charge, short bunch, low current
- High efficiency at high gradient
- Maintain beam quality Longitudinal and transverse stability

	System			Driver			Front-End		Cooling		Acceleration (Collider	TOTAL	CLIC
	Sub-			Driver	Linac H-	Accum	Capture&		6D	Final	Injector	RLAs	RCS			Acceleratio
	system			(SPL	like)	&Comp	Bunching	Initial	(2 lines)	(2 lines)	Linac	(2stages)	(3stages)	Ring	IMC	n
RF system	Referen	ce expert		F.Ge	erigk	?	D.Neuffer	C.Rogers	D.Stratakis	C.Rogers	A.Bc	gacz	S.Berg	E.Gianfel	ce	
IN System		Energy	GeV/c	0.16	5	5	0.255	0.255	0.255	0.255	1.25	62.5	1500	1500		1500
noromoto		# bunches (u+ or u-)	#	0.120	-	1	12	12	1	1	1	1	1	1		312
paramete	r S	Charge/bunch	E12	40	mA	500	3.57	2.56	7.21	4.39	3.73	3.17	2.22	2.20		3.72E-03
•	Deem	Rep Freq	Hz	5	5	5	5	5	5	5	5	5	5	5		50
	Beam	Norm Transv Emitt	rad-m				1.5E-02	3.0E-03	8.3E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05		660/20E-06
J.P. Delahave	(system	Beam dimens. (H/V) in RF	mm	?	?	?	?	?	?	?	?	?	?	?		1?
	exity	Norm Long Emitt	rad-m				4.5E-02	2.4E-02	1.8E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03		
		Pulse/Bunch length	m	2.2	ms	0.6 (2ns)	1.1E+01	1.1E+01	9.2E-02	9.2E-02	4.6E-02	2.3E-02	2.3E-02	5.0E-03		4.4E-05
		Power (μ+ and μ-)	W	6.40E+04	2.2E+06	2.0E+06	1.8E+04	1.3E+04	3.0E+03	1.8E+03	7.6E+03	3.2E+05	5.4E+06	5.3E+06		2.8E+07
		Technology		NC Linac4	SC	SC	NC	NC	NC Vacuum	NC	SC	SC	SC	SC		NC High Grad
		Number of cavities	#	23	244	2	120	367	7182	32	52	360	2694	?	11076	149000
1 st N A		RF length	m	46	237	1	30	105	1274	151	82	1364	2802	?	6092	30000
		Frf	MHz	352	704	44	326to493	325	325-650	20-325	325	650-1300	1300	800	4 to 1300	12000
	RE	Grf	MV/m	1-3.7	19 - 25	2	20	20 to 25	19-28.5	7.2-25.5	20	25 to 38	35	?	1 to 38	100
Collider	cavities	Aperture	mm	28	80		?	?	?	?	300	150	75	120	28 to 300	2.75
connact		Magnetic Field	Т	0	0		2	3T	1.7-9.6	1.5-4	0	0	0	0	0 to 9.6	0
C	.	Installed RF field	MV	169	5700	4	434	2618	30447	1836	1640	50844	98062	250	1.92E+05	3.00E+06
Communi	τν	Beam Energy gain	MeV	160	4840	0	0	0	0	0	1250	62500	1437000	0	1.51E+06	1.50E+06
		Recirculations	#	1	1		1	1	1	1	1	4.5 to 5	13 to 23	1000	1 to 1000	1
Meeting		RF Power/pulse (η=0.6)	MW	25	220	3.E-01	99	429	1172	43	52	360	2024	1.98E-02	4425	1.2E+07
wiccung		Technology		klystron	klystron						Klytro	on-IOT				Two Beam
NA 2024		Cavities/Power Source	#	23	244		4				1 to 2	1 to 2				2
IVIAV 2021	RE	RF Pulse (fill+beam) estim.	ms	2.20	2.20	3.20	1.00E-01	1.00E-01	1.00E-01	1.00E-01	3.00E-02	5.90E-02	7.25E-01	1.48E+01		1.42E-01
,	nower	Prf/Power Source	MW	11.7	1.93						1	1				15
	sources	Total Power Sources	#	17	244		30				52	341			?	1638
		Installed Peak RF Power	MW	34	275		164	515	1407	52	52	341	2429	2.38E-02	5269	2.46E+04
		Average RF power (η=0.6)	MW	0.27	2.13	0.01	0.05	0.21	0.59	0.02	0.01	0.11	14.88	0.00	18.28	143
		Wall plug power (η=0.6)	MW	0.45	3.55	0.01	0.08	0.36	0.98	0.04	0.01	0.18	24.81	0.00	30.46	289

RF system challenges

Alexej Grudiev (CERN) – Technology for future HEP facilities, July 2021

Normal conducting RF for capture and cooling

- High-gradient cavities in high magnetic field
- High charge, Huge beam size, Important beam losses
- Peak RF power
- Little synergy with other projects

6D ionizing cooling

- High charge, short bunch, low current
- High efficiency at high gradient
 - Maintain beam quality Longitudinal and transverse stability

Beam time structure and RF frequency

Dario Giove (INFN-MI-LASA)

accelerator complexes be related

RF system for muon capture and cooling

Region	Length [m]	N of cavities	Frequencies [MHz]	Peak Gradient [MV/m]	Peak RF power [MW/cavity]
Buncher	21	54	490 - 366	0 - 15	1.3
Rotator	24	64	366 - 326	20	2.4
Initial Cooler	126	360	325	25	3.7
Cooler 1	400	1605	325, 650	22, 30	
Bunch merge	130	26	108 - 1950	²⁰ ~ 10	
Cooler 2	420	1746	325, 650	22, 30	
Final Cooling	140	96	325 - 20		
Total	~1300	3951			~4000 x ~3MW => ~12GW

It is a very large and complex RF system with high peak power

Muon cooling demonstrator layout

RF cavities for muon cooling

Bowring et al, PRAB 23 072001, 2020

5.08

Material	B-field (T)	E-field (MV/m)
Cu	0	24.4 ± 0.7
Cu	3	12.9 ± 0.4
Be	0	41.1 ± 2.1
Be	3	$> 49.8 \pm 2.5$

Changeable Cu/Be walls

Challenges:

- High Gradient
- High magnetic field
- High radiation
- Technology far from been common

State of the art (not complete):

- 800 MHz beryllium cavity @ FNAL: 3T, 50 MV/m, 30us@10Hz
- Gas filled RF cavity: _____
 Small gap, 800 MHz, >50 MV/m

11.43

3.81

16

Parameters of RF system (beam dynamics specifications)

Minternational NUON Collider Collaboration	Collimation system	Cooling cells	comments
	Cavity type 1	Cavity type 1	One single cavity design can be used
Number of RF cavities	16	20 x 6 modules = 120	
RF frequency [MHz]	704	704	
Accelerating gradient [MV/m]	15	28.5	No transit time factor is included. It is the amplitude of the accelerating electric field on crest, on axis (For ideal pillbox it is also max surface electric field).
Cavity length [m]	0.125	0.105 or 0.120 (TBC)	
Beam window radius [m]	0.050	0.045 to 0.090 (TBC)	
Beam window thickness (Be) [um]			Assuming 2 windows per cavity
			All numbers are provisional

Parameters of the RF system

MInternational VON Collider Collaboration	Collimation system	Cooling cells	comments
Cavity parameters	Cavity type 1	Cavity type 1	One single cavity design is used
<mark>f [MHz]</mark>	<mark>704</mark>	-	
Q-factor	~26000	-	
R/Q [circOhm]	~100	-	
Filling time: ~Q/f [us]	~30	-	
Power source requirements			
Max. Nominal Gradient [MV/m]	20	30	
RF power loss in one cavity [MW]	1	2	
Pulse length: [us]	~30 + 0.1	~30 + 0.1	~ filling time + bunch train
Repetition rate: [Hz]	~5	~5	?
RF power from the klystron(s) [MW]	1.5	3	50% margin for all. ESS:30%
Number of klystrons	16	2x120 = 240	1.5 MW per klystron ESS has ~200 klystrons

RF power source: 704 MHz

Commercially available RF power sources with the parameters closest to the specs are at the frequencies of currently running proton linacs:

For example, ESS:

CPI: VKP	-8352A/B:	352MHz, 2.8MW, 100kW
CPI:	VKP-8292A:	704 MHz, 1.5 MW, 74kW
CANON:	E37504	704MHz, 1.5MW, 74kW, 3.5ms, 14 Hz
Thales:	2182A	704 MHz, 1.6 MW

Preliminary design aimed at fitting a cavity of the size up to a 700 MHz system

Minimum bore of the split coil
600 RT free bore for RF
700 mm minimum SC coil diameter

General layout of the RFMF test station

Planning for a test facility before the demonstrator

- Studying options to test RF cavities in B-field
 - Possibility at Daresbury lab, INFN LASA, CEA Saclay, CERN
 - 3 GHz tests likely possible
- No resource to test RF at design frequency
 - Large bore solenoid with appropriate RF equipment does not exist
 - Significant cost to bring RF source

C. Rogers, L.Rossi, D. Giove et al.

General layout of the RFMF test station

LOOKING FOR SYNERGIES ON TECHNOLOGIES AND PHYSICS

Preliminary design aimed at fitting a cavity of the size up to a 700 MHz system

R&D directions and test facility towards feasibility demonstration of muon cooling

- Stage 1: High gradient RF test facility
 - Frequency: 200 800 MHz
 - Magnetic field: 0 5T, different field configurations
 - Different materials: Cu, Be, Al, ...
 - Different temperatures: Cryogenic NC, HTS RF, ...
 - Different gases and pressure: 0 few Bars
 - Different designs
- Stage 2: Prototype(s) for cooling test facility
 - Design of realistic cavity prototypes: frequency, beam aperture, integration
 - Parameters defined based on the results of Stage 1 and the (re-)design of the muon cooling complex (higher gradient,...)
 - May include irradiation capability to check its impact on the performance
- Stage 3: Muon cooling demonstrator

RF system challenges

Alexej Grudiev (CERN) – Technology for future HEP facilities, July 2021

Normal conducting RF for capture and cooling

- High-gradient cavities in high magnetic field
- High charge, Huge beam size, Important beam losses
- Peak RF power
- Little synergy with other projects

6D ionizing cooling

- High charge, short bunch, low current
- High efficiency at high gradient
 - Maintain beam quality Longitudinal and transverse stability

Initial acceleration

- Limited muon lifetime requires highest possible accelerating gradient to reach higher energies
- Large emittance require large acceptance
 - Additional voltage
 - Low frequency
 - Large aperture
- Very large bunch charge: ~5x10¹² causes collective effects which must be addressed
- Transmission and decay beam losses
- Strong focusing magnets with large apertures
 - Stray magnetic fields
 - Low filling factor
 - Cryogenic NC RF might help in the linac

Accelerators and collider

- Super conducting RF (SRF) system for high efficiency and highest possible acceleration rate to minimize the muon decay losses on the way to very high energies: ~10TeV is required
- Challenges:
 - Large bunch charge in the linacs: $3.6E12 \ \mu => 576nC$
 - Large bunch charge in the rings: $2.2E12 \ \mu => 352nC$
 - Short bunch length in the collider: 1.5 mm
 - Highest possible gradient
 - Power efficiency
 - High energy gain per turn in the rings
 - High level of radiation
 - Stray magnetic field
- •

High energy acceleration: Rings

- Limited muon lifetime requires highest possible ٠ acceleration rate
- Although the rate is defined by the magnet ramping rate, the SRF must follow
- Small number of turns (~100) for very high collision energy ~10 TeV requires very high voltage: ~100 GV
- It operates in quasi pulsed mode:
 - RF is on only during acceleration (~ 10 ms)
 - Transients ٠
- Longitudinal bunch compression/manipulation • require additional voltage
- High gradient for 'compact' RF system
- Very large bunch charge: ~4x10¹² cause collective effects which must be mitigated
- Transmission and decay beam losses
- Power efficiency

An example of parameters for CERN site implementation

•	 Muon Acceleration to 4 TeV in the LEP Tunnel LEP Tunnel. Neuffer, Shiltsev, JINST 13 (2018) T10003 Interleave 16T (13%) and ramping ∓1.9T (87%) dipoles 										
	Tunnel	Circ. m	B(max) T	Pack Frac	RF GV	orbits	freq. Hz	muon surv	E _{final} TeV		
	ISR	942	1.8	0.78	1	48	1260	0.81	0.063		
	SpS	6900	1.8	0.76	15	26	360	0.85	0.45		
	LEP	26700	3.7	0.85	50	71	70	0.83	4		

0.85

70

Interleaved ramping/fixed superconducting dipole example. arXiv:0707.0302 Lucien Cremaldi is running Bob Palmer's 2007 path length Basic code Must adjust muon orbital radius to stay in phase with the SRF

Monday, 5 October 202 Muon Collider Meeting

CERN (page 11)

Collider ring

- Limited muon lifetime requires smallest possible circumference to maximize the number of turns before muons decay
- Although the circumference is defined mainly by the magnets bending radius, the SRF must follow
- High gradient for 'compact' RF system
- Main function of RF is to maintain short bunch length for high luminosity and compensate small SR energy loss
- Very large bunch charge: 2x10¹² and short bunch length: 1 mm cause strong collective effects which must be mitigated
 - Aperture restriction
 - HOM power
- Transmission and decay beam losses

Single bunch beam loading (energy spread): Energy spread ~ Loss factor x Bunch charge

R&D directions for SRF for muon acceleration

- Highest possible gradient
 - Pulsed operation of ~1ms (linac) -> ~10ms (RCS) may help
- Resilience to beam losses and (stray) magnetic field
- Design of the cavity considering
 - High gradient
 - High efficiency
 - Longitudinal and transverse beam dynamic requirements

Critical issues and R&D topics on SRF

- High gradient at low frequency multi cell cavities: 325, 650 MHz
- Technology choice: Bulk vs Coating; Different materials: Nb, Nb3Sn, HTS, ...
- Cavity **type(shape)** for high gradient and low loss factor cavity design studies
- Pulsed operation. Lorenz force detuning in pulsed (strong transient) mode
- **RF power sources**: pulsed, high peak power, **high efficiency**
- Tolerance to external (stray) magnetic field
- Tolerance to the radiation and beam loss
- Power couplers (4 MW per MC, far from state-of-the-art)

Synergy with other projects

Muon cooling demonstrator power studies High peak power klystron: 24 MW

High power L-band Multi Beam Klystrons (MBK). Commercial tubes.

Frequency: **1.0 GHz** Peak RF power: 20 MW Efficiency: 70%

Frequency: **1.3 GHz** Peak RF power: 10 MW Efficiency: 65%

CLIC L-band klystron modulator - ETH

Max voltage	180 kV (160A)
Max current	190 A (@ 150 kV)
Flat-top	140 µs
Rise/fall-time	3 µs
Max rep rate	50 Hz

- Turnkey system (no CERN electronics can manage this)
- Situation: worked on dummy load, since more than 2 years trying to restart-it – electronics issues – difficulties due to turnkey & pandemic influence on components availability
- Requires lot of resources no spares re use for muons will be extremely demanding in resources (M&P)
- Second unit was foreseen in CLIC project (simplified version with CERN electronics and degraded flat-top performances) – funds not available anymore...

CLIC L-band klystron modulator – second (CERN based)

• Second unit intended to verify the design of the pulse transformer and to have a spare

MS sent out in 2018 (industry

interested for this simplified version)

- Simpler version with only:
 - A charger (120 kW, 20 kV) → Already bought (110 kCHF)!
 - A capacitor bank
 - Power electronics (mainly a switch)
 - A pulse transformer → Studies carried out (CERN internal design), partner company interested

Specs for two modulators modulator

	CLIC	Mu-tube
Max voltage	170 kV	171kV
Max current	180 A	200 A
Pulse length	150 µs	30 µs
Flat-top stability	2-5%	NA
Rise/fall-time	3-5 μs	>5 µs
Max rep rate	50 Hz	5 Hz

- Projected cost (CERN based) is iiiii . Construction time is about two years.
- Down-sized for the Mu-tube (less average power, increased flat top stability and rise/fall), will make the project cheaper and less time consuming. All these parameters relaxations can be accepted as the cavities will integrate all the imperfection in RF signal amplitude, provided simple enough RF phase feed-back control.

Motivations and step forward – personal view

- A lot of challenges and opportunity:
 - the cooling system: cell, module and demonstrator are the challenges
 - one or more dedicated RF and integration cell test facility are mandatory
 - a full demonstrator design crucial to be ready to start construction at next ESPPU GO!
- Muon beams manipulation set unique working conditions
- High efficiency RF amplifiers will profit from synergy developments
- Several challenges to explore new ideas, training youngest and engage with industries

Thanks for the opportunity and the attention!

extras

Proposed cooling demonstrator vs MICE

Cooling cell

Acceleration

Instrumentation

Beam

Many cooling cells

Reacceleration

Bunched beam

Multiparticle-style

Cooling cell section

No reacceleration

Single particle

HEP-style

Two **20MW** MBK CLIC L-band klystron prototypes tested in industry.

191 A

73.5 %

51.5 dB

0.341 μAxV^{-3/2}/beam

Strong beam interception in the output cavity.

- Voltage-Efficiency curve does not show saturation
- Unbalanced power split between the two ports.

>> Scaling the Canon tube to 0.7GHz, 24MW and 30 μ sec.

ollaboration	Canon E37503 Canon E37503	Mu-tube, 0.7 GHz 6 beams MBK
F=	999,5 MHz	F= 700 MHz
P max=	20.2 MW	P max= 24 MW
T =	150 μsec	T = <u>30 μsec</u>
V=	159.4 kV	V= 171 kV
I total =	180 A	I total = 200 A
Eff.=	70.5 %	Eff.= 70.0 %
uP=	0.47 µAxV ^{-3/2} /beam	uP= 0.47 μAxV ^{-3/2} /beam
Gain =	53.9 dB	Gain = 53.9 dB
P _{average} (50Hz)= 150kW		P _{average} (5Hz) = 3.6kW

IEEE TRANSACTIONS ON ELEC

Scaling Procedures and Post-Optimization for the Design of High-Efficiency Klystrons

Igor Syratchev

To our experience such a scaling is a low risk development:

- For the fixed micro perveance, the tube length is proportional to the frequency
- Lower cathode current density (55%) and increased life time.
- Much lower average power (simpler collector)
- Marginal (~10%) increase of the modulator voltage and current.

Beam Voltage epy [kV]

Cost and schedule:

- The CLIC tube prototypes were designed/built about 10 years ago; Canon: iiiii and Thales : iiiiii. Mu-tube cost will be within this range, as the companies shall do it not from scratch, but could scale it from exiting ones. Though, today there is no market for such devices, thus the cost of 'unique' prototype could be even higher.
- Similar to the CLIC tubes, it will take about 24 month to design, built and test the first Mu-tube prototype. Additional budget will be needed for the testing infrastructure (like RF loads etc.).