RF efficiency and sustainability

NURIA CATALAN LAHERAS COMMUNITY REPORT ON ACCELERATORS ROADMAP INFN FRASCATI 12-13 JULY 2023

- The impact of RF in accelerators
- Power sources
- Cavity technology
 - Normal conducting structures
 - SC cavities
- LLRF and operation
- ERL

- The impact of RF in accelerators
- Power sources
- Cavity technology
 - Normal conducting structures
 - SC cavities
- LLRF and operation
- ERL

• The consumption of the LHC represents more than half of the CERN energy bill

 <u>https://www.lhc-</u> <u>closer.es/taking_a_closer_look_at</u> <u>lhc/0.energy_consumption</u>

• But how much is the contribution of the RF system?

5

RF

5300 kW

42%

Sector Magnets

657 kW 5%

Primary Beamline

Magnets

2307 kW 18%

LHC Cooling System LHC Cryogenics LHC Magnets & Converters LHC Radio Frequency

LHC Ventilation System SM18 Facility Transfer Lines (T12 & T18)

Average RF power needs of the next Higgs factory

ILC 0.5 TeV: Pulsed, 1.3 GHz, $P_{\rm RF,total}$ 60 plus cryo out of 134 MW B. List ILC Power Consumption and Performance Risks, https://agenda.infn.it/event/21199/

The CLIC project. arXiv 2203.09186

■ RF power ■ Cooling power ■

- The impact of RF in accelerators
- Power sources
- Cavity technology
 - Normal conducting structures
 - SC cavities
- LLRF and operation
- ERL

RF sources for science

- Large scale particle physics accelerators can be operated with vast diversity of RF power sources.
- The actual choice of the RF source type will be driven by the practical consideration : tunnel integration, spatial power density, cost/W and Efficiency.

The klystron is a key element of almost all particle accelerators.

High Efficiency klystrons project at CERN is targeted to improve efficiency and performance of these devices for various applications.

micro Perveance (µA/V1.5)

400 MHz KLYSTRON for FCC

- Large dynamic range: 0.5MW -> 1.3 MW MW, CW
- Very Efficient: up to 88% (yet in simulations)
- Compact: ~2.5m length in total
- Low voltage: 50-70kV
- High saturated power gain: >40dB
- High efficiency Klystron project at CERN and ULAN develops HE FCC 0.4GHz, 1MW MBK klystron as a highest priority item.
- Selected Two-Stage klystron topology provides compact and efficient solution.
- The project time-line suggests that FAT will be performed in **2026**. Strong collaboration with industry is mandatory from the very beginning of the project .
- Within L-band, such a topology can be scaled and used for different high energy large accelerator (FCC, CLIC, ILC, CEPC, Muon_C).

17–21 Apr 2023 NH Hotel, Trieste, Italy Europe/Zurich timezone

<u>New RF amplifiers based on GaN</u> <u>semiconductors M1 - M24</u>

D. Dancila and A. Mohadeskasaei (Uppsala University - FREIA)

73.5% PAE @ 750 MHz

- The impact of RF in accelerators
- Power sources
- Cavity technology
 - Normal conducting structures
 - SC cavities
- LLRF and operation
- ERL

Where does the power supplied to the RF device go?

Normal conducting for high efficiency

- Use of travelling wave structures
- Very high beam loading:
 - Large current and high gradient in a very short pulse
- Management of wakefields by low Q plus local extraction/absorption
- SICA 94% RF to beam demonstrated in CTF3

M. Bernard et al. EPAC 2004 Lucerne

SC cavities: cryogenics and static losses

The Carnot limit:

$$W_{min} = Q_i \cdot \left(\frac{T_0}{T_i} - 1\right) = 1 \cdot \left(\frac{300}{4.5} - 1\right) = 65.7 W_{min}$$

At 2K 3 x times more power is needed!

Clear advantage to go to materials with high Tc like Nb3Sn, A15 or multilayers

Important to optimized cryostat against thermal leaks

C.O.P. of large cryogenic helium refrigerators

SC cavities dynamic losses

$$Ps = \frac{V_{acc}^2}{\left(\frac{R}{Q}\right)Q}$$
$$\frac{1}{Q} \propto R_s = R_{BCS}(T) + R_{res} = \left(\frac{A\omega^2}{T}\right)e^{-\frac{\Delta}{kT}} + R_{fl} + R_r$$

8/11/23

- The impact of RF in accelerators
- Power sources
- Cavity technology
 - Normal conducting structures
 - SC cavities
- LLRF and operation
- ERL

Operational efficiency. Controls margin

- Today's klystrons are rated for 300 kW CW in saturation. Regular operation for klystrons is typically 1.5 dB below saturation
- Polar loop to linearize the klystron gain
- The trip Level prevents from overdriving the

SWITCH/

PROTECTION

TUNER LOO

300 kW Klystron

Cire

CONDITIONING DDS

Baseban Network Analyze

RF MODULATOR

Operational efficiency. The example of LHC

- In collision, efficiency of the klystron is about 20% (hadrons).
- Looking into reducing the voltage during the ramp

- The impact of RF in accelerators
- Power sources
- Cavity technology
 - Normal conducting structures
 - SC cavities
- LLRF and operation
- ERL

Energy efficiency on ERLs?

Energy supply = acceleration

→ "loss free" energy storage (in the beam)

- Only a small portion of the power lays in the beam
- Beam power in circular machines is virtual
- Recovery is limited to a small number of turns
- <u>Still, any energy recovery is comparable</u> to all other mentioned improvements

• Practical problems with power couplers

[→] Energy recovery = deceleration

Some thoughts on sustainability

- Air and water cooling are not included in most calculations, and it is extremely inefficient
- Solid state industry rapid change forces updates every 5-10 years with a considerable number of "old technology" spares. Is that sustainable?
- Measuring and estimating power consumption is mandatory
- CO2 footprint calculations are even more rare.
- Many initiatives but all different
- Welcome all initiatives to agree on a set of rules for evaluation of CO2 and sustainability in general

Summary

- Data from operating machines is paramount to improve our current and future systems
- RF will be the main contributor to the energy spent by the next pp collider
- The main factors are being investigated and improved as we speak
 - Power sources: klystrons and solid state
 - SC Cavities: material, process, operation
 - NC structures:
 - However, this is not a one size fits all!!!
- Operation is not optimized for energy efficiency but for reliability
- The ERL case is promising but needs further development

