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Why Building a Muon Collider
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Leptons are the ideal probes of short-distance physics:

Electroweak is dominant interaction, and EW+Higgs is main future target 

All the energy is stored in the colliding partons

No energy “waste” due to parton distribution functions

High-energy physics probed with much smaller collider energy

Estimate for EWK-only

charged particles 

5 10 15 20 25 30
20

50

100

200

500

sμ [TeV]

s p
[T
eV

]

pp  at which 

for pair prod. with 

s σpp = σμμ

M ∼ sμ

Estimate for EWK+QCD-

charged particles 

<latexit sha1_base64="7rUmEMmq13744h8fprw+eC7WG5s=">AAAC9XicbVLLjtMwFHXCawivAks2FtVIg1RVSTUaWI5gw3KQ6MxITakc5yax6pdsp6iKsmMLf8AOseV7+AG+gSVOW9R2Zq4U6eSce3yv73WmObMujn8H4a3bd+7eO7gfPXj46PGT3tNn51bVhsKYKq7MZUYscCZh7JjjcKkNEJFxuMjm7zr9YgHGMiU/uqWGqSClZAWjxHlq1vubZlAy2RSiKBiHtilgKUtDdNVGGG/FNXWUxPHgJH4VpZ7SIBtXMTrvMn2upzgUrmHJgI22nGFl5RqVDNQO6csY4Rtou+zF2nB4gzgaLEb7Rl0p10netNjlc1VnXf8q2VpSkPm2+ej/7+qis14/HsarwNdBsgF9tImzWe9PmitaC5COcmLtJIm1mzbEOEb9eVFaW9CEzkkJEw8lEWCnzWpDLT70TI4LZfwnHV6xu46GCGuXIvOZgrjKXtU68iZtUrvizbRhUtcOJF0XKmqOncLdunHODFDHlx4QapjvFdOKGEKdfxR7VbrFC91GfjDJ1TFcB+ejYXIyPP5w3D99uxnRAXqBXqIjlKDX6BS9R2dojGjwKfgSfA2+hZ/D7+GP8Oc6NQw2nudoL8Jf/wAEQer7</latexit>



Why Building a Muon Collider

3

Leptons are the ideal probes of short-distance physics:

Electroweak is dominant interaction, and EW+Higgs is main future target 

All the energy is stored in the colliding partons

No energy “waste” due to parton distribution functions

High-energy physics probed with much smaller collider energy

Electrons radiate too much, while muons don’t



Muon Collider Physics Pillars

Direct 
searches

The muon collider combines pp and ee advantages:

• High available energy for new heavy particles production

• High available statistics for precise measurements (and no QCD bck)
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Direct searches
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Fig. 3: Left panel: exclusion and discovery mass reach on Higgsino and Wino Dark Matter candidates at
muon colliders from disappearing tracks, and at other facilities. The plot is adapted from Ref. [9]. Right:
exclusion contour [4] for a scalar singlet of mass m� mixed with the Higgs boson with strength sin �

small mass-splitting. WIMP DM can be studied at muon colliders in several channels (such as mono-
photon) without directly observing the charged state [7, 8]. Alternatively, one can instead exploit the
disappearing tracks produced by the charged particle [9]. The result is displayed on the left panel of
Figure 3 for the simplest candidates, known as Higgsino and Wino. A 10 TeV muon collider reaches
the “thermal” mass, marked with a dashed line, for which the observed relic abundance is obtained by
thermal freeze out. Other minimal WIMP candidates become kinematically accessible at higher muon
collider energies [7,8]. Muon colliders could actually even probe some of these candidates when they are
above the kinematical threshold, by studying their indirect effects on high-energy SM processes [10,11].

New physics particles are not necessarily coupled to the SM by gauge interaction. One setup
that is relevant in several BSM scenarios (including models of baryogenesis, dark matter, and neutral
naturalness) is the “Higgs portal” one, where the BSM particles interact most strongly with the Higgs
field. By the Goldstone Boson Equivalence Theorem, Higgs field couplings are interactions with the
longitudinal polarizations of the SM massive vector bosons W and Z, which enable Vector Boson Fusion
(VBF) production of the new particles. A muon collider is extraordinarily sensitive to VBF production,
owing to the large luminosity for effective vector bosons. This is illustrated on the right panel of Figure 3,
in the context of a benchmark model [4,12] (see also [13,14]) where the only new particle is a real scalar
singlet with Higgs portal coupling. The coupling strength is traded for the strength of the mixing with
the Higgs particle, sin �, that the interaction induces. The scalar singlet is the simplest extension of the
Higgs sector. Extensions with richer structure, such as involving a second Higgs doublet, are a priori
easier to detect as one can exploit the electroweak production of the new charged Higgs bosons, as well
as their VBF production. See Ref.s [15–17] for dedicated studies, and Ref. [18] for a review.

We have seen that in several cases the muon collider direct reach compares favorably to the one
of the most ambitious future proton collider project. This is not a universal statement, in particular it is
obvious that at a muon collider it is difficult to access heavy particles that carry only QCD interactions.
One might also expect a muon collider of 10 TeV to be generically less effective than a 100 TeV proton
collider for the detection of particles that can be produced singly. For instance, for additional Z

0 massive
vector bosons, that can be probed at the FCC-hh well above the 10 TeV mass scale. We will see in
Section 5 that the situation is slightly more complex and that, in the case of Z

0s, a 10 TeV muon collider
sensitivity actually exceeds the one of the FCC-hh dramatically (see the right panel of Fig. 6).

8

µµ annihilation: copious production of 
EW-charged particles up to Ecm/2

Vector Bosons Fusion: sensitive to 
EW-neutral Higgs-Portal particles

These searches can, for instance, advance probes of 
(un)-Natural EWSB by one or two orders of magnitude

This will, for instance, probe conclusively extended 
Higgs sectors that produces strong first-order EW 
phase transition in the early Universe

5

Indirect detection 0.333

FCC-hh 1.602FCC-hh 1.1

MuC 10 TeV 1.37MuC 10 TeV 1.1

CLIC 3 TeV 1.5

ILC 0.5 TeV 0.326ILC 0.5 TeV 0.249

FCC-ee 0.293FCC-ee 0.174

CEPC 0.261CEPC 0.119

Direct detection projection 2.004

Indirect detection 3.493

FCC-hh 6.488FCC-hh 4.75

MuC 3 TeV 1.38MuC 3 TeV 1.26

MuC 10 TeV 4.5MuC 10 TeV 4.0

CLIC 3 TeV 1.677CLIC 3 TeV 1.49

ILC 0.5 TeV 0.427ILC 0.5 TeV 0.249

FCC-ee 0.397FCC-ee 0.175

CEPC 0.359CEPC 0.119

m(e�±1 ) [TeV]10
�1 1

Higgsino

Wino

No collider

2�, disappearing track

5�, disappearing track

kinematic limit
p

s/2
2�, indirect limit

Fig. 3: Left panel: exclusion and discovery mass reach on Higgsino and Wino Dark Matter candidates at
muon colliders from disappearing tracks, and at other facilities. The plot is adapted from Ref. [9]. Right:
exclusion contour [4] for a scalar singlet of mass m� mixed with the Higgs boson with strength sin �

small mass-splitting. WIMP DM can be studied at muon colliders in several channels (such as mono-
photon) without directly observing the charged state [7, 8]. Alternatively, one can instead exploit the
disappearing tracks produced by the charged particle [9]. The result is displayed on the left panel of
Figure 3 for the simplest candidates, known as Higgsino and Wino. A 10 TeV muon collider reaches
the “thermal” mass, marked with a dashed line, for which the observed relic abundance is obtained by
thermal freeze out. Other minimal WIMP candidates become kinematically accessible at higher muon
collider energies [7,8]. Muon colliders could actually even probe some of these candidates when they are
above the kinematical threshold, by studying their indirect effects on high-energy SM processes [10,11].

New physics particles are not necessarily coupled to the SM by gauge interaction. One setup
that is relevant in several BSM scenarios (including models of baryogenesis, dark matter, and neutral
naturalness) is the “Higgs portal” one, where the BSM particles interact most strongly with the Higgs
field. By the Goldstone Boson Equivalence Theorem, Higgs field couplings are interactions with the
longitudinal polarizations of the SM massive vector bosons W and Z, which enable Vector Boson Fusion
(VBF) production of the new particles. A muon collider is extraordinarily sensitive to VBF production,
owing to the large luminosity for effective vector bosons. This is illustrated on the right panel of Figure 3,
in the context of a benchmark model [4,12] (see also [13,14]) where the only new particle is a real scalar
singlet with Higgs portal coupling. The coupling strength is traded for the strength of the mixing with
the Higgs particle, sin �, that the interaction induces. The scalar singlet is the simplest extension of the
Higgs sector. Extensions with richer structure, such as involving a second Higgs doublet, are a priori
easier to detect as one can exploit the electroweak production of the new charged Higgs bosons, as well
as their VBF production. See Ref.s [15–17] for dedicated studies, and Ref. [18] for a review.
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Amazing WIMP or WIMP-like DM search program:

• Disappearing tracks

• Mono-X

• Higgs-portal DM in VBF

• Thermal Wino and Higgsino discovery

Figure 1: Number of EW pair-production events, computed with MadGraph [12], using the E↵ective
Photon Approximation for the calculation of the neutral VBF production cross-section. Namely, neutral
VBF is evaluated as the sum of the 4 subprocess initiated by l+l�, l+�, �l�, and ��, with a

p
�Q2 >

30 GeV cut on the virtual photons and the correspondingQmax = 30 GeV cuto↵ in the photon distribution
function. The photon distribution function is the one for muons. The neutral VBF cross-section would
thus be larger than what shown in the figure at the e+e� VHEL because of the smaller electron mass.

models [9]. We see that the statistics is su�cient to discover all particles up around the collider
mass-threshold Ecm/2, provided they decay to energetic and easily detectable SM particles. By
comparing with the reach projections of other future collider projects (see [10]), this simple
plot is su�cient to qualify as striking the direct discovery potential of the VHEL, especially
for Ecm � 14 TeV. On the other hand, detailed detector-level studies including BIB mitigation
strategies are compulsory to assess the observability of BSM particles decaying to soft objects
(because of, e.g., a compressed spectrum), or displaying disappearing tracks signatures like the

Higgsino/Wino (eh/fW ) Minimal Dark Matter candidates. The possibility of observing these
candidates indirectly through their radiative e↵ects, bypassing all this kind of complications,
has been studied in Ref. [11]. The reach of mono-photon searches has been also studied [7].

The VHEL potential for indirect new physics discoveries is equally or perhaps even more
striking that the direct one, but it is slightly less trivial to assess and to illustrate. The present
paper aims at outlining the elements for this assessment, based on selected sensitivity estimates.

The indirect physics potential emerges from the combination of two items. The first one is
that indirect e↵ects of heavy new physics e↵ects are generically more pronounced on processes
that take place at higher energy, i.e. closer to the new physics scale. In the E↵ective Field
Theory (EFT) description this is merely the observation that the corrections from operators of
dimension larger than 4 can grow polynomially with the energy. The luminosity benchmark in
eq. (1) generically allows for measurements of 2 ! 2 short-distance electroweak scattering pro-
cesses with percent or few-percent (i.e., moderate) precision. Still, a dimension-6 EFT operator
displaying quadratic energy growth, inducing relative corrections to the SM of order E2

cm/⇤
2,

could be probed at the VHEL with Ecm � 10 TeV for an e↵ective interaction scale ⇤ in the
ballpark of 100 TeV. On a process occurring at the EW scale, of 100 GeV, ⇤ ⇠ 100 TeV would
instead contribute as an unobservable O(10�6) relative correction. The power of precision probes
based on high-energy cross-section measurements has been outlined extensively in the context
of CLIC studies [13]. They make, for instance, the highest energy stage of CLIC comparable
or superior to the other future colliders project on physics targets such as Higgs and Top com-
positeness [10]. By rescaling the highest CLIC available energy, of 3 TeV, to the lowest VHEL
energy of 10 TeV, we immediately conclude that the VHEL performances are expected to be
vastly superior to those of any other project currently under discussion.
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Figure 1: Diagrammatic contributions to the qq ! q0q0WW process. On the left, the scattering
topology. On the right, one representative “radiation” diagram.

that factorization fails for massive vector particles. On the other, because it suggests that it

simply does not make sense, even in an ideal experimental situation, to extract in a model

independent way the on-shell hWWWW i correlator from experimental data: the interesting

physics of WW scattering would always be mixed up in an intricate way with SM e↵ects.

We thus believe that studying the conditions for the applicability of EWA is important, and

timely as well. Obviously the goal is not to find a fast and clever way to do computations.

One should view EWA as a selection tool that allows to identify the relevant kinematic region

of the complete process, the one which is more sensitive to the EWSB dynamics. One would

want to focus on the kinematics where EWA applies not to speed up the computations, but

to gain sensitivity to the relevant physics.

In this paper we shall analyze in detail the applicability of EWA. We will find, not

surprisingly, that, in the proper kinematic regime, factorization is valid and EWA works

egregiously. In order to prove that, we shall not need to focus, as KS did, on the case of

a heavy Higgs or a strongly interacting EWSB sector, actually we shall not even need to

restrict on the specific sub-process WW ! WW . Factorization indeed does not rely in any

way on the detailed nature of the hard sub-process. It relies instead on the existence of a

large separation of virtuality scales between the sub-process and the collinear W emission.

That only depends on kinematics and corresponds to requiring forward energetic jets and

hard high P? outgoing W ’s. When those conditions are imposed EWA works well, for both

longitudinally and transversely polarized W ’s, also including the case of weakly-coupled

EWSB (light and elementary Higgs) where all helicities interact with the same strength

⇠ gW at all energies.

One serious issue in the applicability of EWA is the size of the subleading corrections.

2
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Muon Collider Physics Pillars

Direct 
searches

High-precision 
indirect probes

The muon collider combines pp and ee advantages:

• High available energy for new heavy particles production

• High available statistics for precise measurements (and no QCD bck)
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High-precision indirect probes
HL-LHC HL-LHC HL-LHC

+10 TeV +10 TeV
+ ee

W 1.7 0.1 0.1
Z 1.5 0.4 0.1
g 2.3 0.7 0.6
� 1.9 0.8 0.8
Z� 10 7.2 7.1
c - 2.3 1.1
b 3.6 0.4 0.4
µ 4.6 3.4 3.2
⌧ 1.9 0.6 0.4


⇤
t 3.3 3.1 3.1

⇤ No input used for µ collider
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FCC-hh

Fig. 5: Left panel: 1� sensitivities (in %) from a 10-parameter fit in the -framework at a 10 TeV muon
collider with 10 ab�1 [18], compared with HL-LHC. The effect of measurements from a 250 GeV e

+
e
�

Higgs factory is also reported. Right panel: sensitivity to �� for different Ecm. The luminosity is as in
eq. (1) for all energies, apart from Ecm=3 TeV, where doubled luminosity (of 1.8 ab�1) is assumed [18].

In the right panel of the figure we see that the performances of muon colliders in the measurement
of �� are similar or much superior to the one of the other future colliders where this measurement
could be performed. In particular, CLIC measures �� at the 10% level [24], and the FCC-hh sensitivity
ranges from 3.5 to 8% depending on detector assumptions [25]. A determination of �� that is way more
accurate than the HL-LHC projections is possible already at a low energy stage of a muon collider with
Ecm = 3 TeV.

The potential of a muon collider as a vector boson collider has not been explored fully. In particular
a systematic investigation of vector boson scattering processes, such as WW ! WW , has not been
performed. The key role played by the Higgs boson to eliminate the energy growth of the corresponding
Feynman amplitudes could be directly verified at a muon collider by means of differential measurements
that extend well above one TeV for the invariant mass of the scattered vector bosons. Along similar
lines, differential measurements of the WW !HH process has been studied in [6, 19] (see also [2]) as
an effective probe of the composite nature of the Higgs boson, with a reach that is comparable or superior
to the one of Higgs coupling measurements. A similar investigation was performed in [2,4] (see also [2])
for WW!tt, aimed at probing Higgs-top interactions.

5 High-energy measurements
Direct µ

+
µ

� annihilation, such as HZ and tt production reported in Figure 4, displays a number of
expected events of the order of several thousands. These are much less than the events where a Higgs or
a tt pair are produced from VBF, but they are sharply different and easily distinguishable. The invariant
mass of the particles produced by direct annihilation is indeed sharply peaked at the collider energy Ecm,
while the invariant mass rarely exceeds one tenth of Ecm in the VBF production mode.

The good statistics and the limited or absent background thus enables percent of few-percent level
measurements of SM cross sections for hard scattering processes of energy Ecm = 10 TeV or more.
An incomplete list of the many possible measurements is provided in Ref. [26], including the resummed
effects of EW radiation on the cross section predictions. It is worth emphasizing that also charged final
states such as WH or `⌫ are copiously produced at a muon collider. The electric charge mismatch with
the neutral µ

+
µ

� initial state is compensated by the emission of soft and collinear W bosons, that occurs
with high probability because of the large energy.
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HL-LHC HL-LHC HL-LHC
+10 TeV +10 TeV

+ ee

W 1.7 0.1 0.1
Z 1.5 0.4 0.1
g 2.3 0.7 0.6
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⇤
t 3.3 3.1 3.1

⇤ No input used for µ collider
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Higgs 3-linear

Is it the SM Higgs?
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LHC (now)

(If you like this way of presenting Higgs self-coupling precision, please feel free 
to use it! The inspiration came from conversations with R. Petrossian-Byrne.) 

See talks by I. Low & M. Forslund
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Is it the SM Higgs?

C (10 TeV)μ

HL-LHC
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Is it the SM Higgs?

C (10 TeV)μ

HL-LHCA pictorial view of 3-linear precision:

Many unexplored opportunities

                                      [e.g., VV scattering]



Muon Collider Physics Pillars

Direct 
searches

High-precision 
indirect probes

High-energy 
probes

The muon collider combines pp and ee advantages:

• High available energy for new heavy particles production

• High available statistics for precise measurements (and no QCD bck)

Furthermore:

• Can measure processes of very high energy 

• Collides muons, for the first time

8



High-energy probes
As simple as this:
     at EW [FCC-ee] energiesi                 


               =

 at muon collider energies  

10−6

Δσ(E)
σSM(E)

∝
E2

Λ2
BSM 10−2

[say, ] ΛBSM = 100 TeV

Or even simpler:

Proton compositeness discovered probing the 
proton with E ∼ 100 MeV ≲ 1/rp ∼ ΛQCD

= 1/rH

Composite Higgs
minimal Z’

SM

SM

9

Higgs 

FEW(q2)

, Z*, W*

rH = 1/m*rH = 1/m*

proton 

Fem(q2)



Muon Collider Physics Pillars

Direct 
searches

High-precision 
indirect probes

High-energy 
probes

Muon-specific 
opportunities

The muon collider combines pp and ee advantages:

• High available energy for new heavy particles production

• High available statistics for precise measurements (and no QCD bck)

Furthermore:

• Can measure processes of very high energy 

• Collides muons, for the first time

10



The SM Physics Case
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[Under constructions. Thanks to N.Craig, I.Low, M.Luty and G.Sterman for discussions]

What is a SM physics case?

We tend to considers our daily work (in spite of loving it!) an uninteresting 
technicality towards the (unspecified) Big Thing.

Other communities are more successful, enthusiastic and appealing because 
they value their “everyday work” as physicists. 

We must learn to spell out the excitement of predicting and observing new 
phenomena, in SM.



The SM Physics Case
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[Under constructions. Thanks to N.Craig, I.Low, M.Luty and G.Sterman for discussions]

The muon collider will probe a new regime of EW force: 




Plenty of cool things will happen:

Electroweak Restoration. The  group emerging, finally!

Electroweak Radiation in nearly massless broken gauge theory. 
Never observed, never computed (and we don’t know how!)

The partonic content of the muon: EW bosons, neutrinos, gluons, tops, … 
Copious scattering of 10 TeV neutrinos!

The particle content of partons: e.g., find Higgs in tops, or in W’s, etc 
Neutrino jets will be observed, and many more cool things 

E ≫ mW

SU(2) × U(1)
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[Under constructions. Thanks to N.Craig, I.Low, M.Luty and G.Sterman for discussions]

The muon collider will probe a new regime of EW force: 




Plenty of cool things will happen:

Electroweak Restoration. The  group emerging, finally!

Electroweak Radiation in nearly massless broken gauge theory. 
Never observed, never computed (and we don’t know how!)

The partonic content of the muon: EW bosons, neutrinos, gluons, tops, … 
Copious scattering of 5 TeV neutrinos!

The particle content of partons: e.g., find Higgs in tops, or in W’s, etc 
Neutrino jets will be observed, and many more cool things 

E ≫ mW

SU(2) × U(1)

ν W
e
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Why Working on the Muon Collider

14

IMCC -  11-14 Oct - CERN Fabio Maltoni - Physics 

A new interest in a muon collider
Motivations

• Recurrent interest in the HEP community for accelerating 
muons.


• However, now a very different context:


• New key technologies are becoming available                                   
=> Multi-TeV accelerators being explored                                    
=> Time scale becoming realistic 


• New Physics opportunities                                                       
=> After 10+ years of LHC: energy gap                                                                                                  
=> Direct searches+precision

Timing is right for R&D! ⇒
2

41

1998 2011 2022


TeV!

LHC

125GeV

Pheno

Papers

MuC WG EU Strat. Report: 2019

A new interest on muon colliders, not a renewed one
”A 10-TeV scale muon collider with sufficient integrated luminosity provides an 
energy reach similar to that of a 100 TeV proton-proton collider. […] muon and 
hadron colliders have similar reach and can significantly constrain scenarios 

motivated by the naturalness principle. […] Multi-TeV muon colliders will have 
the benefit of excellent signal to background […] One of the key measurements 
from the multi-TeV colliders is the one of the Higgs self-coupling to a precision 

of a few percent, and the scanning of the Higgs potential.”

From Snowmass EF report. Based on 2 IMCC + 1 MuC 
Forum reports. 15 editors, ~150 authors total. Work from 
~100 papers in 3 past years
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”A 10-TeV scale muon collider with sufficient integrated luminosity provides an 
energy reach similar to that of a 100 TeV proton-proton collider. […] muon and 
hadron colliders have similar reach and can significantly constrain scenarios 

motivated by the naturalness principle. […] Multi-TeV muon colliders will have 
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from the multi-TeV colliders is the one of the Higgs self-coupling to a precision 

of a few percent, and the scanning of the Higgs potential.”

From Snowmass EF report. Based on 2 IMCC + 1 MuC 
Forum reports. 15 editors, ~150 authors total. Work from 
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Why Working on the Muon Collider
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Why this enthusiasm?

1. Before LHC, thinking about other future colliders was less urgent

2. After LHC, need of perspective for ambitious jump ahead in energy exploration. 

Studies for F.C. such as FCC and CLIC prepared the ground.

3. We sharply identified 10+TeV as the final goal. Shorter-term physics 

opportunities are intermediate steps towards 10+TeV realisation.

4. MuC is very new! Both from Facility and from Physics point of view.                     

People like working on MuC, because there is interesting work to do!
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Why this enthusiasm?

1. Before LHC, thinking about other future colliders was less urgent

2. After LHC, need of perspective for ambitious jump ahead in energy exploration. 

Studies for F.C. such as FCC and CLIC prepared the ground.

3. We sharply identified 10+TeV as the final goal. Shorter-term physics 

opportunities are intermediate steps towards 10+TeV realisation.

4. MuC is very new! Both from Facility and from Physics point of view.                     

People like working on MuC, because there is interesting work to do!

An excerpt from the To Do list:

BSM particle discovery and 
characterisation potential

Hadronic VB/Higgs/top 
reconstruction

VV Scattering 
phenomenology

EW showering

Monte Carlo in novel 
phase-space

EW radiation resummation for O(1) modelling.

Next move to precision!

EW-PDF and Z-γ 
interference

Per-mil accuracy in 
single-Higgs?

EW jet definition 
and observability
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Why this enthusiasm?

1. Before LHC, thinking about other future colliders was less urgent

2. After LHC, need of perspective for ambitious jump ahead in energy exploration. 

Studies for F.C. such as FCC and CLIC prepared the ground.

3. We sharply identified 10+TeV as the final goal. Shorter-term physics 

opportunities are intermediate steps towards 10+TeV realisation.

4. MuC is very new! Both from Facility and from Physics point of view.                     

People like working on MuC, because there is interesting work to do!

More items in the To Do list:
Probing LLPs in new 

experimental conditions

FASERν-type physics and detector 
for ν beam from µ decay

Exploiting a foward muon 
detector

Facility and demonstrator 
exploitation, e.g. beam dump

+

TARGET
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d

lm

MAGNET

Beam Dump Setup

 2202.12302 CC, S. Homiller, R. Mishra, M. Reece

Physics synergies and 
Physics Along the Way


[talk by Chris]



Experiment Design
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Design detector for precision at multi-TeV scale

• Extract physics from GeV- and from TeV-energy particles 

• Built-in sensitivity to “unconventional” signatures

The BIB is under control. See EPJC Review

• Demonstrated LHC-level performances with CLIC-like design

• Sensitivity to Higgs production

• Disappearing tracks detection

Exciting opportunities ahead

• Explore new detector concepts

• Identify and pursue key R&D requirements for 

technology development in next 20 years

• New challenges → new techniques that could be 

ported back to HL-LHC and F.C.

• Tackle the gigantic physics program of the MuC!



Conclusions
MuC is great option for the future of high-energy physics:

• Direct access to what most of us want to study: EW and Higgs

• Energy and Precision at once. And, Precision at High Energy

•  is a theoretically and experimentally unexplored regime of QFTE ≫ mW
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MuC is great option for the present of high-energy physics:

• The first collider of its species. All is new, for ACC, PH, TH, EXP!

• MuC physics requires and enables innovative research of self-standing relevance  

This work must start today: 

“We are not waiting for the muon collider, we are working on it” 


F. Maltoni


A lot of cool LHC physics was done decades before the LHC started 
And LHC physics was built on decades of previous proton collider experience! 
Twenty years is barely enough to be ready!
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MuC is great option for the present of high-energy physics:

• The first collider of its species. All is new, for ACC, PH, TH, EXP!

• MuC physics requires and enables innovative research of self-standing relevance  

This work must start today: 

“We are not waiting for the muon collider, we are working on it” 


F. Maltoni


A lot of cool LHC physics was done decades before the LHC started 
And LHC physics was built on decades of previous proton collider experience! 
Twenty years is barely enough to be ready!

New enthusiasm on muon collider physics:

• In spite of (actually, because of!) the risk of failure

• Scientists like working on what is new and difficult

• Opportunity, not threat(!) for collider physics at large



Thank You
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