Energy Recovery Linacs for high-energy physics sustainably enabling high-power beam

First Community Report on the Accelerator R&D Roadmap, Frascati, July 2023

The Standard Model of particle physics has alarming symptoms... and at the same time it is perfectly healthy.

The Standard Model of particle physics has alarming symptoms... and at the same time it is perfectly healthy.

Great theory that matches all our observations related to fundamental interactions

The Standard Model of particle physics has alarming symptoms... and at the same time it is perfectly healthy.

Great theory that matches all our observations related to fundamental interactions

Yet, we are puzzled with the dominance of matter over anti-matter, with the dominance of dark matter in the universe, with the flavour structure of our theory, with the fine-tuning of the parameters in the theory, ... and, it is not clear where we will find answers

If we cannot make great strides into the unknown with current methods, we should concentrate on developing new methods

Particle beams required at high energy and high current = high power !! ENERGY CONSUMPTION !!

in the universe

Particle beams required at high energy and high current = high power !! ENERGY CONSUMPTION !! A paradigm shift: <u>sustainable</u> high-power particle beams

Where our <u>lepton</u> accelerators use power ?

Basic structures of a particle accelerator

Basic structures of a particle accelerator

Basic structures of a particle accelerator

Typical power consumption for an electron-positron Higgs Factory the highest priority next collider for particle physics

Typical power consumption for an electron-positron Higgs Factory the highest priority next collider for particle physics

dump >99.9999% of the beam power radiate away very quickly the beam power

OBJECTIVE: develop new accelerating systems that save power with an impact of saving ~1% of Belgium's electricity

OBJECTIVE: develop new accelerating systems that save power with an **impact of saving** ~2% of **Belgium's electricity**

The high-energy and high-luminosity ep/eA frontier

10

√s (GeV)

The high-energy and high-luminosity ep/eA frontier

The energy efficiency of present and future accelerators [...] is and should remain an area requiring constant attention. A detailed plan for the [...] saving and re-use of energy should be part of the approval process for any major project. European Strategy for Particle Physics 2020

Key building block for beam acceleration: the SRF cryomodule

SRF: Superconducting Radio Frequency

From Grid to Beam

From Grid to Beam

From Grid to Beam

improve amplifier efficiency

e.g. solid state amplifiers for oscillating power demands

operate cavities at higher T & improve Q_0 of cavities e.g. Nb₃Sn from 2K to 4.4K \rightarrow 3x less cooling power needed

e.g. Nb₃Sn from 2K to 4.4K \rightarrow 3x less cooling power needed

Three key innovation directions

Three key innovation directions

Three key innovation directions

iSAS organisation

Spread over 4 years: ~1000 person-months of researchers and ~12.6M EUR (of which 5M EUR is requested to Horizon Europe)

+ industrial companies: ACS Accelerators and Cryogenic Systems (France), RI Research Instruments GmbH (Germany), Cryoelectra GmbH (Germany), TFE Thin Film equipment srl (Italy), Zanon Research (Italy), EuclidTechLab (USA)

iSAS organisation

+ industrial companies: ACS Accelerators and Cryogenic Systems (France), RI Research Instruments GmbH (Germany), Cryoelectra GmbH (Germany), TFE Thin Film equipment srl (Italy), Zanon Research (Italy), EuclidTechLab (USA)

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

bERLinPro & PERLE

essential accelerator R&D labs with ambitions overlapping with those of the particle physics community

towards high energy & high power

next two presentations

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

ERL to enable high-power beams that would otherwise require one or more nuclear power plants

Future ERL-based Colliders

H, HH, ep/eA, muons, ...

the presentation thereafter

bERLinPro & PERLE

essential accelerator R&D labs with ambitions overlapping with those of the particle physics community

towards high energy & high power

next two presentations

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

Identified the key aspects for an Energy Recovery accelerator

towards high-energy & high-intensity beams to be used at particle colliders

Identified the key aspects for an Energy Recovery accelerator towards high-energy & high-intensity beams to be used at particle colliders

Upcoming facilities for Energy Recovery R&D

PERLE @ IJCLab

international collaboration
all ERL aspects to demonstrate readiness
for e⁺e⁻ and ep/eA HEP collider applications

first multi-turn ERL based on SRF technology (3-turns)

> opportunity to include and test several additional energy saving technologies

 opportunity to test FCC-ee cryomodules in a real high-power beam (801.58 MHz cavities)

PERLE – Powerful Energy Recovery Linac for Experiments [CDR: J.Phys.G 45 (2018) 6, 065003]

Upcoming facilities for Energy Recovery R&D

PERLE @ IJCLab

international collaboration
all ERL aspects to demonstrate readiness
for e⁺e⁻ and ep/eA HEP collider applications

first multi-turn ERL based on SRF technology (3-turns)

Technology synergies emerge between 1) R&D for ERL and Sustainability at PERLE and bERLinPro 2) the ambition for high-performant e⁺e⁻ Higgs Factories o *opportunity to include and test* several additional energy saving technologies • opportunity to test FCC-ee cryomodules in a real high-power beam (801.58 MHz cavities)

PERLE – Powerful Energy Recovery Linac for Experiments [CDR: J.Phys.G 45 (2018) 6, 065003]

Organising the European R&D for Energy Recovery in HEP

strengthen collaboration across the field to reach the HEP-related R&D objectives together

first thoughts for workshops dedicated on the design of ERL-based colliders

RI: Research Infrastructure

High-power particle beams enabled by Energy Recovery Linacs

- An <u>enabling technology for our most prominent future e⁺e⁻ and ep/eA collider</u> programs delivering breakthrough performances
- The emerging high-power ERL demonstrators provide <u>synergetic laboratories</u> for energy savings technologies for all SRF accelerators
- The engine of our curiosity-driven exploration with particle physics is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize: <u>ERL systems deliver on this front</u>
- The potential impact of ERL on e⁺e⁻ and ep colliders is so great that not exploring this technology in our strategy is not an option

High-power particle beams enabled by Energy Recovery Linacs

- An <u>enabling technology for our most prominent future e⁺e⁻ and ep/eA collider</u> programs delivering breakthrough performances
- The emerging high-power ERL demonstrators provide <u>synergetic laboratories</u> for energy savings technologies for all SRF accelerators
- The engine of our curiosity-driven exploration with particle physics is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize: <u>ERL systems deliver on this front</u>
- The potential impact of ERL on e⁺e⁻ and ep colliders is so great that not exploring this technology in our strategy is not an option

Thank you for your attention! Jorgen.DHondt@vub.be

more on iSAS

iSAS develops, prototypes & validates SRF energy-saving technologies

TA#1: energy-savings from RF power

The objective is to significantly reduce the RF power sources and wall plug power for all SRF accelerators with ferro-electric fast reactive tuners (FE-FRTs) for control of transient beam loading and detuning by microphonics, and with optimal low level radio frequency (LLRF) and detuning control with legacy piezo based systems. iSAS will demonstrate operation of a superconducting cavity with FE-FRTs coherently integrated with AI-smart digital control systems to achieve low RF-power requirements.

Schematic overview to compensate detuning with new FE-FRTs avoiding large power overhead and to compensate with AI-smart control loop countermeasures via the LLRF steering of the RF amplifier the disturbances in SRF cavities that impact field stability

iSAS develops, prototypes & validates SRF energy-saving technologies

TA#2: energy-savings from cryogenics

The objective is focused on the development of thin-film cavities and aims to transform conventional superconducting radio-frequency technology based on off-shelf bulk niobium operating at 2 K, into a technology operating at 4.2 K using a highly functionalized material, where individual functions are addressed by different layers. iSAS will optimize the coating recipe for Nb₃Sn on copper to optimize tunability and flux trapping of thin-film superconducting cavities and to validate a prototype beyond the achievements of the ongoing Horizon Europe I.FAST project.

The higher critical temperature (T_c) of Nb₃Sn allows for the maximum value of quality factor Q_0 for 1.3 GHz cavities to be achieved at operating temperatures of about 4 K compared to 2 K for Nb (left figure). The graph on the right shows the efficiency of a cryogenic plant (COP) as a function of temperature achieving about 3 times higher COP efficiency when operating at a temperature of 4.2 K than at 2 K. This suggests that operating a cryogenic plant at 4.2 K with Nb₃Sn SRF cavities, can lead to significant better performances and energy savings.

iSAS develops, prototypes & validates SRF energy-saving technologies

TA#3: energy-savings from the beam

The objective is to reduce the total power deposited into the cryogenics circuits of the cryomodule of the Higher-Order Mode (HOM) couplers and fundamental power couplers (FPCs) leading to a significant reduction of the heat loads and the overall power consumption. iSAS will improve the energy efficiency of the FPCs and HOM couplers by designing and building prototypes that will be integrated into a LINAC cryomodule capable of energy-recovery operations and to be tested in accelerator-like conditions.

INNOVATE TECHNOLOGIES TOWARDS A SUSTAINABLE ACCELERATING SYSTEM

NEW DESIGN

TA: Technology Area

TA: Technology Area, INT: Integration Activities

INT#2: deployment of energy saving in current and future accelerator RIs

TA: Technology Area, INT: Integration Activities

RIs: Research Infrastructures

INT#3: accelerator turn-key solutions with breakthrough applications

INT#2: deployment of energy saving in current and future accelerator RIs

more on ERL

Translated into the main R&D objectives for Energy Recovery

geared towards high-energy and high-intensity accelerators incl. synergies with industry

^(*) part of the RF R&D program

Ongoing & Upcoming facilities with ERL systems

worldwide several facilities are operational or are emerging

69

more on ep/eA colliders

The ultimate microscope in hadronic matter: a high-energy electron-hadron collider

The scope

For ep/eA physics, the 2030'ies will be the decade of the EIC

The next ambition for the community will be to enable ep/eA physics both at higher luminosities and at higher energies

Reaching deep into the hadronic matter has the potential to unlock new discoveries and insights to help addressing the puzzles of the SM

A paradigm shift: high-energy electron-proton collions

Collision energy above the threshold for EW/Higgs/Top

from mostly QCD-oriented physics to General-Purpose physics

The real game change between HERA and LHC/FCC

compared to proton collisions, these are reasonably clean Higgs events with much less backgrounds

at these energies and luminosities, interactions with all SM particles can be measured precisely

74

The LHeC program

The FCC-eh program

Future flagship at the energy & precision frontier

Current flagship (27km) impressive programme up to ~2040

Future Circular Collider (FCC) big sister future ambition (100km), beyond 2040 *attractive combination of precision & energy frontier*

Some physics highlights of the LHeC (ep/eA@LHC)

on several fronts comparable improvements between LHC \rightarrow HL-LHC as for HL-LHC \rightarrow LHeC

EW physics

- $\circ \Delta m_W$ down to 2 MeV (today at ~10 MeV)
- $\circ \Delta sin^2 \theta_W^{eff}$ to 0.00015 (same as LEP)

Top quark physics

- \circ |V_{tb}| precision better than 1% (today ~5%)
- \circ top quark FCNC and γ , W, Z couplings

DIS scattering cross sections

 PDFs extended in (Q²,x) by orders of magnitude

Strong interaction physics

- $\circ \alpha_s$ precision of 0.2%
- o low-x: a new discovery frontier

The Large Hadron-Electron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501, 364p (updated CDR)

Some physics highlights of the LHeC (ep/eA@LHC)

on several fronts comparable improvements between LHC \rightarrow HL-LHC as for HL-LHC \rightarrow LHeC

- EW/Higgs/top physics: improvement from LHC \rightarrow HL-LHC similar to HL-LHC \rightarrow LHeC
- Joint ep/pp interaction region with the same detector: correlate results and reach the ultimate precision, e.g. $\Delta m_W \sim 1$ MeV might be within reach *Eur.Phys.J.C* 82 (2022) 1, 40
- In addition, unique potential with LHeC/FCC-eh to search for new physics phenomena, e.g. what if features appear in the interactions between leptons and quarks

A high-energy electron-proton experiment is a general-purpose experiment i.e. H/EW/top/QCD/search factory

Complementarity for Higgs physics in the FCC program

(Higgs coupling strength modifier parameters κ_i – assuming no BSM particles in Higgs boson decay) (expected relative precision)

	kappa-0-HL	HL+FCC-ee ₂₄₀	HL+FCC-ee	HL+FCC-ee (4 IP)	HL+FCC-ee/hh	HL+FCC-eh/hh	HL+FCC-hh	HL+FCC-ee/eh/hh	
50	$\kappa_W[\%]$	0.86	0.38	0.23	0.27	0.17	0.39	0.14	
	$\kappa_Z[\%]$	0.15	0.14	0.094	0.13	0.27	0.63	0.12	
	$\kappa_{g}[\%]$	1.1	0.88	0.59	0.55	0.56	0.74	0.46	
ļ	$\kappa_{\gamma}[\%]$	1.3	1.2	1.1	0.29	0.32	0.56	0.28	
5	$\kappa_{Z\gamma}[\%]$	10.	10.	10.	0.7	0.71	0.89	0.68	
1	$\kappa_c[\%]$	1.5	1.3	0.88	1.2	1.2	-	0.94	
5	κ_t [%]	3.1	3.1	3.1	0.95	0.95	0.99	0.95	
3	κ_b [%]	0.94	0.59	0.44	0.5	0.52	0.99	0.41	
3	$\kappa_{\mu}[\%]$	4.	3.9	3.3	0.41	0.45	0.68	0.41	
6 77 77	$\kappa_{\tau}[\%]$	0.9	0.61	0.39	0.49	0.63	0.9	0.42	
	$\Gamma_H[\%]$	1.6	0.87	0.55	0.67	0.61	1.3	0.44	_
<u>.</u>	adding 365 GeV runs only FCC-ee@240GeV				adding FCC-ep				D
					only FCC-hh				
Illtimate Higgs Eactory - {ee + eh + hh}									

Empowering the FCC-hh program with the FCC-eh

Empowering the FCC-hh program with the FCC-eh

