The Plasma Injector for PETRA IV

Conceptual Design Report

Ilya Agapov, Sergey Antipov, Reinhard Brinkmann, Ángel Ferran Pousa, Sören Jalas, Manuel Kirchen, Wim Leemans, Andreas Maier, Alberto Martinez de la Ossa*, Jens Osterhoff, Rob Shalloo, Maxence Thévenet and Paul Winkler

PETRA IV. The Ultimate 3D X-ray Microscope

The future 4th generation synchrotron light source at DESY

- PETRA IV will provide up to 1000 times higher brightness beams than PETRA III.
- New Extension West Hall doubles the number of photon beamlines (30):

The Plasma Injector for PETRA IV

A competitive, compact and cost-effective alternative

- **Competitive:** full PETRA IV operation (fill + top-up)
- **Compact:** laser-plasma acc. + beamline: < 50 m
- **Cost-effective:** power consumption: < 500 kW

- ~10,000 user/yr.
- PETRA IV will become a world reference in 3D X-ray microscopy, driving groundbreaking discoveries in health, energy, mobility, information technology, earth and environment.

Key challenges:

- Energy gain: 6 GeV
- Energy spread and jitter: < 0.3 %
- (to maximize charge throughput and stability)
- Charge injection rate: > 2.6 nC/s (to fill the ring in < 10 minutes)
- Availability: > 98% (for the user's satisfaction)

Laser-plasma acceleration technology (LPA) enables a more compact and energy efficient injector

DESY's moonshot

Enabling laser-plasma accelerators for PETRA IV (and beyond)

- Builds upon successful LPA development at DESY: LUX for enhanced beam quality ^[1, 2], reliability and performance ^[3]
- Active feedback with AI control for enhanced stability: KALDERA^[4]
- Laser guiding technologies for efficient 6 GeV energy gain: HOFI ^[5] •
- State-of-the-art computing capabilities for precise modeling ^[6] • and advanced machine learning optimization ^[7]
- Novel Energy Compression Beamline (ECB), enabling sub-per-mille levels of energy spread and stability [8, 9]

Plasma injector design

Laser-plasma accelerator plus energy compression beamline

Simulation framework

Optimization, jitter modeling, start-to-end

Laser pulse (flattened Gaussian) $a_0 = 2.0, w_0 = 50 \mu m, P_0 = 345 TW,$ τ = 53 fs (fwhm), Energy = 19.6 J.

Plasma target

LUX-type profile: $n_p = 2 \times 10^{17} \text{ cm}^{-3}$ HOFI channel: $w_m = 50 \ \mu m$.

LPA optimization: FBPIC^[6] and Optimas^[7] Maximizes the beam spectral density at 6 GeV Minimizes the laser energy.

Electron beam

Charge: 87 pC, Energy spread: 0.5 %. Emittance (norm): 4.6 µm, 1.7 µm. Divergence: 0.2 mrad, 0.1 mrad. Laser-to-beam energy efficiency: 2.7 % Start-to-end simulations: full jitter analysis, aided by surrogate modeling Beamline simulations with OCELOT (tracking, collimation, CSR, RF, etc.) Tracking in the storage ring with ELEGANT (wakefields, synchrotron radiation, etc.)

Overall energy deviations reduced by a factor of $25 \rightarrow 0.04\%$ Emittance is preserved in the horizontal plane (chromatic correction). Charge throughput 96%. No additional particle loss in the ring.

Operating PETRA IV

Repetition rate

- Filling the ring in 10 min.: 2.6 nC/s \rightarrow 80 pC @ 32 Hz.
- Top-up 1% of the charge every 6 min: 40 pC/s \rightarrow 80 pC @ 0.5 Hz.

Power consumption

- Realistic PIC simulations exhibit <u>2.7% laser-to-beam energy efficiency</u>.
- The ECB enables <u>96% charge injection throughput</u>.
- Modern diode-pumped laser systems perform with <u>1% wall-plug efficiency</u>.

Average beam power 2.6 nC/s × 6 GeV = 15.6 W

Average laser (electrical) power 15.6 W / <mark>0.026%</mark> = 60 kW electrical-to-beam energy efficiency

Component	Power
Laser system	60 kW
Laser cooling	40 kW
Magnets	60 kW
RF system	40 kW
Magnet & RF cooling	15 kW
Vacuum system	20 kW
Miscellaneous	10 kW
Total	245 kW

Average power consumption

Implementation Roadmap

HELMHOLTZ

DESY. Deutsches Elektronen-Synchrotron: MLS /MPA /MPY * <u>alberto.martinez.de.la.ossa@desy.de</u>