Contribution ID: 174

New methods to produce polarized 3He ion beams

Wednesday, 20 September 2023 16:45 (20 minutes)

The use of polarized ³He ions in storage rings opens a new window to investigate nuclear forces, because nuclear polarized ³He ions can be regarded as an ideal substitute for polarized neutron beams. Polarized ${}^{3}\text{He}^{2+}$ ions were used in the 1960's, but either the nuclear polarization or the intensity of the ion sources was rather small. Numerous efforts to improve the performance of these sources have so far been unsuccessful.

I will present two new methods for producing polarized ³He beams: the first uses a pre-polarized ³He gas target from which few-MeV ³He^{1+,2+} ions are accelerated with petawatt laser pulses. Data from the Phelix facility show for the first time a polarization signal that confirms numerous theoretical works predicting the potential of plasma-based accelerators to produce polarized beams (electrons, protons, and ions). Our data also support the concept of "Polarized Fuel" to increase the efficiency of future fusion reactors. The second method is based on a Sona transition unit, in which an intense beam of few-keV ³He¹⁺ ions can be polarized up to $P \sim 90\%$ by means of a coherent and monochromatic radio-wave pulse. A status report on a first beam time at COSY-Jülich (Sept. 2023) will be given.

Primary author: BÜSCHER, Markus (Forschungszentrum Jülich / PGI-6)
Presenter: BÜSCHER, Markus (Forschungszentrum Jülich / PGI-6)
Session Classification: WG6: Ion acceleration and developments towards fusion

Track Classification: WG6: Ion acceleration and developments towards fusion