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Physics

Data*

* Here I use „data-driven techniques“ as an 
umbrella term that encompasses everything 
from traditional methods to modern AI.



Talk outline 
… maintaining data  water analogies↔

Phase II 
Let the data work using 

off-the-shelf methods 

Phase III 
Custom-made solutions 

for your application

Phase I 
Collect data



Phase I Data collection and control systems 
From manual labor …

• Inside of vacuum chambers motorized, but gas 

regulation etc. manually 

• Use camera manufacturer's software for data 

acquisition (some supported continuous sets, others 

have to be armed manually before each shot) 

• Data logging: handwritten lab book 

• Control system: Mix between proprietary software 

and LabView



Phase I Data collection and control systems 
… to fully automized

• Set up coherent acquisition and control system for both 

the laser and experiments based on TANGO controls  

• On-going laboratory-wide effort, driven mostly by PhD 

students 



• Overview about control systems written / coordinated by 

Scott Feister (California State U.) and Charlotte Palmer (QUB) 

• Discusses different design considerations 

• Case studies about 

• LabView at BELLA  

• EPICS at RAL 

• Tango at PALLAS

Phase I Data collection and control systems 
Review paper



• What to do with my data? 

• What are established machine learning 

techniques? 

• Which method is suitable for my 

application? 

Phase II Apply established machine learning techniques 



• What to do with my data? 

• What are established machine learning 

techniques? 

• Which method is suitable for my 

application? 

• Extensive review / tutorial paper (30+ 

pages) on data-driven science and machine 

learning methods in laser-plasma physics 

Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
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Laser-plasma physics has developed rapidly over the past few decades as lasers have become both
more powerful and more widely available. Early experimental and numerical research in this field
was dominated by single-shot experiments with limited parameter exploration. However, recent
technological improvements make it possible to gather data for hundreds or thousands of di↵erent
settings in both experiments and simulations. This has sparked interest in using advanced techniques
from mathematics, statistics and computer science to deal with, and benefit from, big data. At the
same time, sophisticated modeling techniques also provide new ways for researchers to deal e↵ectively
with situation where still only sparse data are available. This paper aims to present an overview
of relevant machine learning methods with focus on applicability to laser-plasma physics and its
important sub-fields of laser-plasma acceleration and inertial confinement fusion.
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Methods in Laser-Plasma Physics, High Power Laser Science 
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Phase II Apply established machine learning techniques 
Review paper
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Phase II Apply established machine learning techniques 
Review paper

• What to do with my data? 

• What are established machine learning 

techniques? 

• Which method is suitable for my 

application? 

• Extensive review / tutorial paper (30+ 

pages) on data-driven science and machine 

learning methods in laser-plasma physics 



Phase II Apply established machine learning techniques 
Object detection using YOLOv5

• Shadowgram of a plasma wave 
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Abstract
The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object
classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection
architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser
laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser–
plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density
are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of
the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate
the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over
1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and
offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet
robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control
and diagnostic tools, especially for those involving image data.

Keywords: high repetition rate; laser–plasma accelerators; machine learning; object detection; optical diagnostics

1. Introduction

High-power laser systems with power reaching the petawatt
level and repetition rate at a fraction of a hertz have emerged
worldwide in the past few years[1–5]. With the fast develop-
ment of high-repetition-rate operation capabilities in plasma
targetry, high-power laser–plasma experiments can employ
statistical methods that require a large number of shots.
Studies for real-time optimization using evolutionary algo-
rithms have been reported in recent years[6–11]. As the size
of data to process has continued to increase, more advanced
machine learning models have attracted increasing attention.
By constructing predictive models, machine learning meth-
ods are employed to model the nonlinear, high-dimensional
processes in high-power laser experiments. Various methods,
including neural networks, Bayesian inference and deci-
sion trees, have been introduced for optimization tasks and
physics interpretation[12–17]. Meanwhile, as the measurement
and diagnostic tools evolve, digital imaging is playing an
increasingly important role in experiments and, with it,
machine learning methods to process image data.

Correspondence to: Jinpu Lin, Ludwig-Maximilians-Universität
München, Am Coulombwall 1, 85748 Garching, Germany. Email:
Lin.Jinpu@physik.uni-muenchen.de

In the case of a laser–plasma accelerator, image-based
diagnostics can take a variety of forms, from the optical
elements in the high-power laser facility, over shadowgra-
phy and interferometry of plasma dynamics, to scintillator
signals generated by energetic electron or X-ray beams
from the accelerator. In particular, the evolving structure
of a plasma accelerator is challenging to visualize because
of its microscopic size (∼10−5 m) and its high velocity
(approaching the speed of light). With the latest techniques,
such as few-cycle shadowgraphy, taking snapshots of the
plasma wake structure is enabled in femtosecond resolution
over a range of picoseconds[18–20]. The latest generation of
laboratory diagnostics for plasma structures is reviewed by
Downer et al.[21].

In this paper, we demonstrate exemplary applications of an
object detection network in the diagnostics in a high-power
laser laboratory. We apply the object detector to few-cycle
shadowgraphy of plasma waves, to an electron energy spec-
trometer and to detect optical damages in a high-power laser
beamline. The results show that object detection enables
possibilities in diagnostics and data analysis that have not
yet been achieved using conventional methods. Moreover,
due to the fast inference speed of the object detector, it paves
the road towards real-time demonstration of such diagnostics
during experiments.

© The Author(s), 2023. Published by Cambridge University Press in association with Chinese Laser Press. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.
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• Applied „off-the-shelf“ ML method 

• You Only Look Once (YOLO) is an 

industry-standard object detection 

network 

Phase II Apply established machine learning techniques 
Object detection using YOLOv5
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diagnostics can take a variety of forms, from the optical
elements in the high-power laser facility, over shadowgra-
phy and interferometry of plasma dynamics, to scintillator
signals generated by energetic electron or X-ray beams
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(approaching the speed of light). With the latest techniques,
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In this paper, we demonstrate exemplary applications of an
object detection network in the diagnostics in a high-power
laser laboratory. We apply the object detector to few-cycle
shadowgraphy of plasma waves, to an electron energy spec-
trometer and to detect optical damages in a high-power laser
beamline. The results show that object detection enables
possibilities in diagnostics and data analysis that have not
yet been achieved using conventional methods. Moreover,
due to the fast inference speed of the object detector, it paves
the road towards real-time demonstration of such diagnostics
during experiments.
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the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

1
/���7	  ��0���. ������� /�1�����������107/����3103�����

2��0�.���30:��70������77

• Accurate predictions after fine-

tuning with only 30-50 samples 

• Works for plasma waves, laser 

damage, etc. 

Phase II Apply established machine learning techniques 
Object detection using YOLOv5



High Power Laser Science and Engineering, (2023), Vol. 11, e7, 9 pages.
doi:10.1017/hpl.2023.1

RESEARCH ARTICLE

Applications of object detection networks in high-power
laser systems and experiments

Jinpu Lin , Florian Haberstroh , Stefan Karsch, and Andreas Döpp
Ludwig-Maximilians-Universität München, Garching, Germany
(Received 25 August 2022; revised 20 December 2022; accepted 30 December 2022)

Abstract
The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object
classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection
architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser
laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser–
plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density
are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of
the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate
the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over
1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and
offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet
robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control
and diagnostic tools, especially for those involving image data.

Keywords: high repetition rate; laser–plasma accelerators; machine learning; object detection; optical diagnostics

1. Introduction

High-power laser systems with power reaching the petawatt
level and repetition rate at a fraction of a hertz have emerged
worldwide in the past few years[1–5]. With the fast develop-
ment of high-repetition-rate operation capabilities in plasma
targetry, high-power laser–plasma experiments can employ
statistical methods that require a large number of shots.
Studies for real-time optimization using evolutionary algo-
rithms have been reported in recent years[6–11]. As the size
of data to process has continued to increase, more advanced
machine learning models have attracted increasing attention.
By constructing predictive models, machine learning meth-
ods are employed to model the nonlinear, high-dimensional
processes in high-power laser experiments. Various methods,
including neural networks, Bayesian inference and deci-
sion trees, have been introduced for optimization tasks and
physics interpretation[12–17]. Meanwhile, as the measurement
and diagnostic tools evolve, digital imaging is playing an
increasingly important role in experiments and, with it,
machine learning methods to process image data.

Correspondence to: Jinpu Lin, Ludwig-Maximilians-Universität
München, Am Coulombwall 1, 85748 Garching, Germany. Email:
Lin.Jinpu@physik.uni-muenchen.de

In the case of a laser–plasma accelerator, image-based
diagnostics can take a variety of forms, from the optical
elements in the high-power laser facility, over shadowgra-
phy and interferometry of plasma dynamics, to scintillator
signals generated by energetic electron or X-ray beams
from the accelerator. In particular, the evolving structure
of a plasma accelerator is challenging to visualize because
of its microscopic size (∼10−5 m) and its high velocity
(approaching the speed of light). With the latest techniques,
such as few-cycle shadowgraphy, taking snapshots of the
plasma wake structure is enabled in femtosecond resolution
over a range of picoseconds[18–20]. The latest generation of
laboratory diagnostics for plasma structures is reviewed by
Downer et al.[21].

In this paper, we demonstrate exemplary applications of an
object detection network in the diagnostics in a high-power
laser laboratory. We apply the object detector to few-cycle
shadowgraphy of plasma waves, to an electron energy spec-
trometer and to detect optical damages in a high-power laser
beamline. The results show that object detection enables
possibilities in diagnostics and data analysis that have not
yet been achieved using conventional methods. Moreover,
due to the fast inference speed of the object detector, it paves
the road towards real-time demonstration of such diagnostics
during experiments.

© The Author(s), 2023. Published by Cambridge University Press in association with Chinese Laser Press. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

1
/���7	  ��0���. ������� /�1�����������107/����3103�����

2��0�.���30:��70������77

Phase II Apply established machine learning techniques 
Object detection using YOLOv5

• Implemented in TANGO  

(get image from camera, remove noise, detect features, show results) 

• Allows for live analysis during experiments



Phase III Custom-built methods 

Example I 
Spatio-Temporal  

Laser Pulse 
Characterization

ω
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Example II 
Laser-Accelerator 

Optimization 



Ultra-intense laser characterization 

f( ) =

= f −1( )

x
yI(x, y, t)

3-D intensity distribution in time  
 
Knowledge necessary for  
• Highest peak-intensity 
• Accurate simulations 
• Spatio-temporal shaping 

(flying focus etc.) 
• …

Take measurements with 2D camera sensor

Retrieve?



Ultra-intense laser characterization 

f( ) =

= f −1( )

x
yI(x, y, t)

3-D intensity distribution in time  
 

Take measurements with 2D camera sensor

Retrieve?

n = nx × ny × nλ

voxels∼ 1000 × 1000 × 100 = 108

But are voxels really a good base function choice?

100 million voxels / parameters: Need many measurements (e.g. Fourier transform spectroscopy with >1000 2D measurements)



Ultra-intense laser characterization 
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

This is the important part,  
describing how light of 
different color is focused!

Φ(x, y, ω)



Ultra-intense laser characterization 
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

We know there is a very good base to describe phase: 
Zernike polynomials

Zm
n (ρ, φ) = Rm

n (ρ) cos(m φ)
Z−m

n (ρ, φ) = Rm
n (ρ) sin(m φ),



Ultra-intense laser characterization 
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

We also know there is a very good way to describe 
spectral phase: Taylor expansion (group delay, group delay dispersion, etc.)
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Ultra-intense laser characterization 
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

Can describe the hyperspectral wavefront using 
Zernike-modes and Taylor-expansion in frequency
Instead of > 1,000,000 voxels we only need to reconstruct 
dominant mode coefficients: Need less measurements



Simple, robust device

Ultra-intense laser characterization 
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023) 



This is for a simple 2x2 lenslet SH detector

Ultra-intense laser characterization 
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023) 

Translate into a forward problem



Translate into a forward problem
Penrose 
pseudo-
inverse 
calculation 
(basically 
realtime)

Ultra-intense laser characterization 
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023) 



760 nm 780 nm

820 nm 840 nm

Ultra-intense laser characterization 
Measurement of STCs of the ATLAS petawatt laser

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings 
using modal multi-spectral wavefront reconstruction, Opt. Express 
31, 19733-19745 (2023)

• Full measurement takes ~ 1 minute  

(9 wavelengths, 5 shots each) 

• Measurement shows couplings in ATLAS are  

< λ/10 between 780 - 820 nm 

• FALCON measurement now routinely 

performed every day after focus measurements



Ultra-intense laser characterization 
Least-squares in Zernike-Taylor basis

Ax = y arg min
x

{∥Ax − y∥2}

arg min
x̃

{∥AΨx̃ − y∥2}

Minimize

Transform  to (truncated) Zernike-Taylor basisΨ

1000x1000x100 numbersnx × xy × nω ∼

Leading coefficients (<1000)

Much more robust reconstruction!

•A. Döpp et al. Data-driven Science and Machine Learning 
Methods in Laser-Plasma Physics, High Power Laser Science 
and Engineering 11 55 (2023)  | arXiv:2212.00026 (2022)



Ax = y arg min
x

{∥Ax − y∥2}

arg min
x̃

{∥AΨx̃ − y∥2 + ∥x̃∥1}

Minimize

Few coefficients as possible

Transform to some sparse basis  
(e.g. wavelet, PCA, etc.)

Ultra-intense laser characterization 
Compressed sensing

1000x1000x100 numbersnx × xy × nω ∼

•A. Döpp et al. Data-driven Science and Machine Learning 
Methods in Laser-Plasma Physics, High Power Laser Science 
and Engineering 11 55 (2023)  | arXiv:2212.00026 (2022)



Ax = y arg min
x

{∥Ax − y∥2}

arg min
x̃

{∥AΨx̃ − y∥2 + *(y)}

Minimize

Learnt regularization 
(Residual estimate)

Ultra-intense laser characterization 
Deep compressed sensing

1000x1000x100 numbersnx × xy × nω ∼

Transform to some sparse basis  
(e.g. wavelet, PCA, etc.)

•A. Döpp et al. Data-driven Science and Machine Learning 
Methods in Laser-Plasma Physics, High Power Laser Science 
and Engineering 11 55 (2023)  | arXiv:2212.00026 (2022)



Ax = y
̂x = arg min

x̃
{∥AΨx̃ − y∥2 + *(y)}

Ultra-intense laser characterization 
Deep compressed sensing

1. S. Howard et al. Hyperspectral Compressive Wavefront Sensing, High Power Laser Science and Engineering, 2023, 11(3):32 



Bayesian optimization 
Sequential model-based optimization

1. Build model

2. Choose new point

3. Build new model

4. Choose new point

5. …

More on Bayesian optimization 
tomorrow in WG7!



Multi-objective multi-fidelity optimization 
Optimization of electron beam properties (FBPIC simulations)

• We want to optimize three electron beam 

parameters: 

• Charge  (total charge, charge within FWHM, etc.) 

• Bandwidth (standard deviation , median absolute 

deviation , etc.) 

• Distance to a target energy (using 

mean energy, median energy, peak energy, etc.) 
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ΔĒ2 ⋅ σE

Q
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Ē

(b)
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• Different metrics 

• Different weights 

• Choosing different metrics or weights for each 

objective changes the outcome in an a priori 

unknown way! 

• Instead we want to make a survey and learn the 

trade-offs between all objectives (Pareto 

optimization) 

• Irshad, F., Karsch, S., & Döpp, A. Multi-objective and multi-fidelity Bayesian optimization of 
laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)



Multi-objective multi-fidelity optimization 
Optimization of electron beam properties (Experiment)
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• F. Irshad, et al. Pareto Optimization of a Laser Wakefield 
Accelerator (under review)

8-D optimization: 

• Jet focus & height,  

• Blade focus & height,  

• Dispersion ( , , ) 

• Gas Pressure

ϕ2 ϕ3 ϕ4

See Faran’s talk tomorrow 
at 17:40 in WG7

(Model chooses shot number dynamically)



Multi-objective multi-fidelity optimization 
Optimization of electron beam properties (Experiment)

• Once the Pareto-optimal solutions are identified, 

we can choose from them what kind of beam we 

want. 

• We observe that many of the Pareto-optimal 

solutions yield the same laser-to-beam 

efficiency. 

• Lower energy spread results in lower efficiency, 

i.e. is mostly a filtering effect 

• F. Irshad, et al. Pareto Optimization of a Laser Wakefield 
Accelerator (under review)



Summary 

„Off-the-shelf“ ML: 
Fine-tuned YOLO 

Object Detection to 
work with data from 

experiments

Demonstrated Few-
Shot Spatio-Temporal 
Characterization in a 
Zernike-Taylor Basis

Implemented a 
coherent control 
system based on 

TANGO controls in 
CALA

Demonstrated  
tuning of a laser-

plasma accelerator with 
Bayesian optimization
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