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* Here | use , data-driven techniques” as an
. umbrella term that encompasses everything
. from traditional methods to modern Al.



Talk outline

... maintaining data <> water analogies
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Custom-made solutions

Collect data S
for your application
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From manual labor ...

* Inside of vacuum chambers motorized, but gas

regulation etc. manually

« Use camera manufacturer's software for data

acquisition (some supported continuous sets, others

have to be armed manually before each shot)

« Data logging: handwritten lab book

» Control system: Mix between proprietary software
and LabView
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... to fully automized
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Tango Controls and data pipeline for petawatt laser
experiments

Nils WeiBe ", Leonard Doyle ™, Johannes Gebhard, Felix Balling, Florian Schweiger, Florian Haberstroh,
Laura D. Geulig", Jinpu Lin"", Faran Irshad, Jannik Esslinger’", Sonja Gerlach”’, Max Gilljohann,
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Peter G. Thirolf ", Stefan Karsch, and Andreas Dopp'™
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(Received | December 2022; accepted 16 February 2023)

Abstract

The Centre for Advanced Laser Applications in Garching, Germany, is home to the ATLAS-3000 multi-petawatt laser,
dedicated to research on laser particle acceleration and its applications. A control system based on Tango Controls
is implemented for both the laser and four experimental areas. The device server approach features high modularity,
which, in addition to the hardware control, enables a quick extension of the system and allows for automated data
acquisition of the laser parameters and experimental data for each laser shot. In this paper we present an overview of our
implementation of the control system, as well as our advances in terms of experimental operation, online supervision
and data processing. We also give an outlook on advanced experimental supervision and online data evaluation - where
the data can be processed in a pipeline — which is being developed on the basis of this infrastructure.

Keywords: data processing; high-power laser experiments; laser-plasma acceleration; online diagnostics

1. Introduction work. However, this server infrastructure should still be easy
to maintain and to work with because it must be used by
Petawatt laser facilities!'! enable the study of a plethora of ~ many different employees and collaborating scientists from
phenomena, ranging from fundamental physics'™"! and over  other facilities with specific needs and varying levels of
laser-driven radiation sources'** to applications with high  programming experience. If these requirements are met, the
societal relevance, such as medical imaging™'”) and fusion  server infrastructure then allows for even more advanced
energy!''l. However, the wide range of applications also  steps, such as online diagnostics, that enable the automation
results in a high variability of experimental configurations,  of the experiment and the implementation of safety features.
and frequently shifting experimental requirements demand  In addition, a common server infrastructure standardizes the
continuous modifications to the used technical infrastructure.  acquired data and streamlines the evaluation process into a
The integration of new devices, such as motors, cameras  data pipeline. The ongoing development of the data pipeline
or special instruments, into an experimental setup can be a  is planned to further enable advanced evaluation and control
time-consuming task for experimental physicists. Reliable — methods enabled by machine learning!'?.
control and supervision of all implemented devices is the In this paper we are going to review the implementation
first step in conducting any successful experiment. Thus,  of a control system that satisfies the requirements out-
having a highly dependable and customizable server infras-  lined above at the Centre for Advanced Laser Applications
tructure that enables data acquisition and control of the entire ~ (CALA), its petawatt laser and experimental chambers!'"),
experiment can be of great benefit for daily experimental — The paper is structured as follows. Scction 2 outlines the
experimental infrastructure at CALA and the need for a com-
. . , — — mon server infrastructure. An overview of the implemented
Mimci:;f“iom"dcgzik:;:bsﬁf l\"»'e.g;“;_ ug‘:;ﬁm:'“gl::nl:mgﬂ control system, Tango Controls' "), and its basic features in
terms of supervision and experimental operation is given

nils. weisse @ physik.uni-muenchen.de
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e Set up coherent acquisition and control system for both
the laser and experiments based on TANGO controls
e On-going laboratory-wide effort, driven mostly by PhD

students
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e Overview about control systems written / coordinated by

Scott Feister (California State U.) and Charlotte Palmer (QUB)
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Abstract

The next generation of high-power lasers enables repetition of experiments at orders of magnitude higher frequency

than what was possible using the prior generation. Facilities requiring human intervention between laser repetitions . E P I ‘ S a t R A I
need to adapt in order to keep pace with the new laser technology. A distributed networked control system can enable

laboratory-wide automation and feedback control loops. These higher-repetition-rate experiments will create enormous
quantities of data. A consistent approach to managing data can increase data accessibility, reduce repetitive data-software
development and mitigate poorly organized metadata. An opportunity arises to share knowledge of improvements to

control and data infrastructure currently being undertaken. We compare platforms and approaches to state-of-the-art
control systems and data management at high-power laser facilities, and we illustrate these topics with case studies from
e e Tango a

Keywords: big data; community organization; control systems; data management; feedback loops; high-power lasers; high repetition rate;
metadata; stabilization; standards

1. Introduction
applications''”) including rapid, high spatial resolution
1.1. Shifts in high-power laser technology necessitate X-ray tomography! "l free-clectron lasing!"*"*], FLASH
revised digital infrastructure radiotherapy! ") and materials damage testing”'). In order
to develop these sources for applications (e.g., optimizing
High-power and high-intensity laser-plasma interactions their stability and tunability), and in order for them to be
provide a versatile experimental platform. They can  competitive with alternative sources, it is necessary for the
produce extreme plasma environments, either for laboratory source repetition rate to drastically increase from sub-Hz to
astrophysics and fundamental plasma physics, or as aunique a0 e p (and beyond).
source of secondary radiation. Secondary sources include
bright, keV-MeV X-rays''l, low-emittance and high-current
electron beams”™™1, GeV electron beams™ ), ultra-short
MeV proton beams'™'’l and pulsed neutron sources!'').
These sources have demonstrated significant potential for

Tackling the obstacles to achieving multi-Hz repetition-
rate high-intensity laser-plasma interactions has been a focus
of the high-power laser community in recent years. Great
progress has been shown in laser technology!™, replenishing
targets!”* "1 and online diagnostics""*!, The increasing
availability of experimental facilities compatible with high

Correspondence to: Charlotte A. J. Palmer, Queen’s University  repetition rates now highlights the need to adjust traditional
Belfast, Belfast BT7 INN, UK. Email: c.palmer@gqub.ac.uk; Scott Feister, . . . R
experimental practices, and control, in order to fully exploit

California State University Channel Islands, Camarillo, Califorma 93012, R x
USA. Email: scott.feister @csuci.cdu the opportunities offered by these systems™!. Among these
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Data-driven Science and Machine Learning Methods in Laser-Plasma Physics

« What to do with my data?

Andreas Dépp,! * Christoph Eberle,’ Sunny Howard,!'? Faran Irshad,! Jinpu Lin,! and Matthew Streeter?

! Ludwig—Mazimilians—Unaversitat Minchen, Am Coulombwall 1, 85748 Garching, Germany
2 Department of Physics, Clarendon Laboratory, University of Oxford,
Parks Road, Ozford OX1 3PU, United Kingdom
3 Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom

« What are established machine learning

Laser-plasma physics has developed rapidly over the past few decades as lasers have become both
more powerful and more widely available. Early experimental and numerical research in this field
was dominated by single-shot experiments with limited parameter exploration. However, recent
technological improvements make it possible to gather data for hundreds or thousands of different
settings in both experiments and simulations. This has sparked interest in using advanced techniques
from mathematics, statistics and computer science to deal with, and benefit from, big data. At the
same time, sophisticated modeling techniques also provide new ways for researchers to deal effectively
with situation where still only sparse data are available. This paper aims to present an overview
of relevant machine learning methods with focus on applicability to laser-plasma physics and its
important sub-fields of laser-plasma acceleration and inertial confinement fusion.

techniques?

 Which method is suitable for my
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predictive models in machine learning. The data was
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FIG. 5. Example of gradient boosting with decision
trees. First, a decision tree g; is fitted to the data. In the
next step, the residual difference between training data and
the prediction of this tree is calculated and used to fit a second
decision tree g». This process is repeated n times, with each
new tree g, learning to correct only the remaining difference
to the training data. Data in this example sampled from same
function as in Fig. 2 and each tree has a maximum depth of
two decision layers.

in regression settings or entropy and information gain in
a classification setting. At each decision point the data
set is split and subsequently the metric is re-evaluated
for the resulting groups, generating the next layer of de-
cision nodes. This process is repeated until the leaves are
reached. The more layers decision layers are used, called
the depth of the tree, the more complex relationships can
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FIG. 7. Real-world example of a multilayer perceptro . .
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median energy (E) and (c) measured and predicted energy s
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model incorporating a trained neural network was
used to provide an additional computation pack-
age to the Geant4 particle physics platform. Neu-
ral networks are also trained to assist hohlraum
design for ICF experiments by predicting the time
evolution of the radiation temperature, in the re-
cent work by McClarren et al.''?. In the work
by Simpson et al.!'3, a fully-connected neural net-
work with three hidden layers is constructed to
assist the analysis of a x-ray spectrometer, which
measures the x-rays driven by MeV electrons pro-
duced from high-power laser-solid interaction.

7. Physics-informed machine learning models

The ultimate application of machine learning for mod-
eling physics systems would arguably be to create an
“artificial intelligence physicist”, as coined by Wu and
Tegmark''*. One prominent idea at the backbone of how

Tram a aeep neural NeTWork. AN example oI us- |
ing decision tree as an initializer are Deep Jointly-
Informed Neural Networks (DJINN) developed by
Humbird et al.?®, which have been widely ap-
plied in the high power laser community, especially
in analyzing inertial confinement fusion datasets.
The algorithm first constructs a tree or a random
forest with tree depth set as a tunable hyperpa-
rameter. It then maps the tree to a neural net-
work, or maps the forest to an ensemble of net-
works. The structure of the network (number of
neurons and hidden layer, initial weights, etc.) re-
flects the structure of the tree. The neural network
is then trained using back-propagation. The use
of decision trees for initialization largely reduces
the computational cost while maintaining compa-
rable performance to optimized neural network ar-
chitectures. The DJINN algorithm has been ap-
plied to several classification and regression tasks

fs (bandwidth

limit), 1 Hz
Jalas et al.,|800 nm Ti:Sa,|Bayesian
2021'%° 2.6 J, 39 fs, 1|optimization
Hz

deformable mir- | Electron
ror (37 actuatorfile,
voltages) & transverse emittance,

angular  pro-
energy distribution

optical pulse compression

deformable  mirror
or acousto-optic
programmable

dispersive filter

Gas cell flow rate
& length, laser dis-
persion (92¢, 9830,
92 ¢), focus position
Gas cell flow rates
(H, front and back,
N32); focus position

and laser energy

Electron beam charge, total
charge within energy range,
electron beam divergence

Total electron beam energy,
Electron charge within ac-
ceptance angle, Betatron X-
ray counts

Spectral charge density

TABLE I. Summary of a few representative papers on machine-learning-aided optimization in the context of laser-plasma

acceleration and high-power laser experiments.

distributions, in this case the electron energy distribu-
tion. While simple at the first glance, these objectives
need to be properly defined and there are often differ-
ent ways to do so?’!. In the example above, energy and
bandwidth are examples for the central tendency and the
statistical dispersion of the energy distribution, respec-
tively. These can be measured using different metrics
such as weighted arithmetic or truncated mean, the me-
dian, mode, percentiles and so forth for the former; and
full width at half maximum, median absolute deviation,
standard deviation, maximum deviation, etc. for the lat-
ter. Each of these seemingly similar measures emphasises
different features of the distribution they are calculated
from, which can affect the outcome of optimization tasks.
Sometimes one might also want to include higher order
momenta as objectives, such as the skewness, or use in-
tegrals, e.g. the total beam charge.

2. Pareto optimization

In practice, optimization problems often constitute
multiple sometimes competing objectives g;. As the ob-
jective function should only yield a single scalar value,
one has to condense these objectives in a process known
as scalarization. Scalarization can for instance take the
form of a weighted product g = [] g or sum g = 3" a;g;
of the individual objectives g; with the hyperparameters
a; describing its weight. Another common scalarization
technique is e-constraint scalarization, where one seeks
to reformulate the problem of optimizing multiple ob-
jectives into a problem of single-objective optimization
conditioned on constraints. In this method the goal is to
optimize one of the g; given some bounds on the other ob-
jectives. All of these techniques introduce some explicit
bias in the optimization which may not necessarily repre-

Input Output

Global maximum
of yz

1A JO ewixXew 8oo7

FIG. 12. Pareto front. Illustration how a multi-objective
function f(z) = y acts on a two-dimensional input space

= (z1,z2) and transforms it to the objective space y =
(y1,y2) on the right. The entirety of possible input positions
is uniquely color-coded on the left and the resulting position
in the objective space is shown in the same color on the right.
The Pareto-optimal solutions form the Pareto front, indicated
on the right, whereas the corresponding set of coordinates in
the input space is called the Pareto set. Note that both Pareto
front and Pareto set may be continuously defined locally, but
can also contain discontinuities when local maxima get in-
volved. Adapted from Irshad et al.?%?.

sent the desired outcome. Because of this, the hyperpa-
rameters of the scalarization may have to be optimized
themselves by running optimizations several times.

A more general approach is Pareto optimization, where
the entire vector of individual objectives g = (g1,...,9nN)
is optimized. To do so, instead of optimizing individual
objectives, it is based on the concept of dominance. A
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Applications of object detection networks in high-power
laser systems and experiments

Jinpu Lin‘®, Florian Haberstroh®, Stefan Karsch, and Andreas Dopp

Ludwig-Maximilians-Universitit Miinchen, Garching, Germany
(Received 25 August 2022; revised 20 December 2022; accepted 30 December 2022)

Abstract

The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object
classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection
architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser
laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser—
plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density
are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of
the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate
the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over
1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and
offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet
robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control
and diagnostic tools, especially for those involving image data.
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Abstract

The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object
classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection
architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser
laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser—
plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density
are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of
the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate
the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over
1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and
offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet
robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control

and diagnostic tools, especially for those involving image data.
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1. Introduction

High-power laser systems with power reaching the petawatt
level and repetition rate at a fraction of a hertz have emerged
worldwide in the past few years!!]. With the fast develop-
ment of high-repetition-rate operation capabilities in plasma
targetry, high-power laser—plasma experiments can employ
statistical methods that require a large number of shots.
Studies for real-time optimization using evolutionary algo-
rithms have been reported in recent years!®!'!1. As the size
of data to process has continued to increase, more advanced
machine learning models have attracted increasing attention.
By constructing predictive models, machine learning meth-
ods are employed to model the nonlinear, high-dimensional
processes in high-power laser experiments. Various methods,
including neural networks, Bayesian inference and deci-
sion trees, have been introduced for optimization tasks and
physics interpretation!'>~'71. Meanwhile, as the measurement
and diagnostic tools evolve, digital imaging is playing an
increasingly important role in experiments and, with it,
machine learning methods to process image data.
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In the case of a laser—plasma accelerator, image-based
diagnostics can take a variety of forms, from the optical
elements in the high-power laser facility, over shadowgra-
phy and interferometry of plasma dynamics, to scintillator
signals generated by energetic electron or X-ray beams
from the accelerator. In particular, the evolving structure
of a plasma accelerator is challenging to visualize because
of its microscopic size (~10~> m) and its high velocity
(approaching the speed of light). With the latest techniques,
such as few-cycle shadowgraphy, taking snapshots of the
plasma wake structure is enabled in femtosecond resolution
over a range of picoseconds!'®"). The latest generation of
laboratory diagnostics for plasma structures is reviewed by
Downer et al.’!l.

In this paper, we demonstrate exemplary applications of an
object detection network in the diagnostics in a high-power
laser laboratory. We apply the object detector to few-cycle
shadowgraphy of plasma waves, to an electron energy spec-
trometer and to detect optical damages in a high-power laser
beamline. The results show that object detection enables
possibilities in diagnostics and data analysis that have not
yet been achieved using conventional methods. Moreover,
due to the fast inference speed of the object detector, it paves
the road towards real-time demonstration of such diagnostics
during experiments.
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Abstract

The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object
classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection
architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser
laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser—
plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density
are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of
the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate
the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over
1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and
offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet
robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control

and diagnostic tools, especially for those involving image data.
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1. Introduction

High-power laser systems with power reaching the petawatt
level and repetition rate at a fraction of a hertz have emerged
worldwide in the past few years!!]. With the fast develop-
ment of high-repetition-rate operation capabilities in plasma
targetry, high-power laser—plasma experiments can employ
statistical methods that require a large number of shots.
Studies for real-time optimization using evolutionary algo-
rithms have been reported in recent years!®!'!1. As the size
of data to process has continued to increase, more advanced
machine learning models have attracted increasing attention.
By constructing predictive models, machine learning meth-
ods are employed to model the nonlinear, high-dimensional
processes in high-power laser experiments. Various methods,
including neural networks, Bayesian inference and deci-
sion trees, have been introduced for optimization tasks and
physics interpretation!'>~'1, Meanwhile, as the measurement
and diagnostic tools evolve, digital imaging is playing an
increasingly important role in experiments and, with it,
machine learning methods to process image data.
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In the case of a laser—plasma accelerator, image-based
diagnostics can take a variety of forms, from the optical
elements in the high-power laser facility, over shadowgra-
phy and interferometry of plasma dynamics, to scintillator
signals generated by energetic electron or X-ray beams
from the accelerator. In particular, the evolving structure
of a plasma accelerator is challenging to visualize because
of its microscopic size (~107> m) and its high velocity
(approaching the speed of light). With the latest techniques,
such as few-cycle shadowgraphy, taking snapshots of the
plasma wake structure is enabled in femtosecond resolution
over a range of picoseconds!'®"). The latest generation of
laboratory diagnostics for plasma structures is reviewed by
Downer et al.”'.

In this paper, we demonstrate exemplary applications of an
object detection network in the diagnostics in a high-power
laser laboratory. We apply the object detector to few-cycle
shadowgraphy of plasma waves, to an electron energy spec-
trometer and to detect optical damages in a high-power laser
beamline. The results show that object detection enables
possibilities in diagnostics and data analysis that have not
yet been achieved using conventional methods. Moreover,
due to the fast inference speed of the object detector, it paves
the road towards real-time demonstration of such diagnostics
during experiments.
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Take measurements with 2D camera sensor
3-D intensity distribution in time

Knowledge necessary for

« Highest peak-intensity

« Accurate simulations

« Spatio-temporal shaping
(flying focus etc.)




Ultra-intense laser characterization m

/@) =0

Take measurements with 2D camera sensor
3-D intensity distribution in time

~ 1000 x 1000 x 100 = 10° voxels v

100 million voxels / parameters: Need many measurements (e.g. Fourier transform spectroscopy with >1000 2D measurements)

But are voxels really a good base function choice?
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Multi-spectral, modal reconstruction
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Ultra-intense laser characterization

Multi-spectral, modal reconstruction
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Ultra-intense laser characterization

Multi-spectral, modal reconstruction

=

10,0 = 1F [0y, @) - exp (i, v, ) | I

We also know there 1s a very good way to describe
SpeCtral phase: Taylor expanSiOn (group delay, group delay dispersion, etc.)



Ultra-intense laser characterization

Multi-spectral, modal reconstruction
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1

al 1 Horizontal pulse front tilt

Can describe the hyperspectral wavefront using
Zernike-modes and Taylor-expansion in frequency

Instead of > 1,000,000 voxels we only need to reconstruct
dominant mode coefficients: Need less measurements

Spatio-spectral phase
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Ultra-intense laser characterization
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters
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! Simple, robust device

N. Weilse, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023)



Ultra-intense laser characterization
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters

This is for a simple 2x2 lenslet SH detector
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N. Weilse, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023)
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FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters
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Ultra-intense laser characterization
Measurement of STCs of the ATLAS petawatt laser

e Full measurement takes ~ 1 minute

(9 wavelengths, 5 shots each)
 Measurement shows couplings in ATLAS are

< N10 between 780 - 820 nm

« FALCON measurement now routinely

performed every day after focus measurements

 N. WeilSe, J. Esslinger et al. Measuring spatial-temporal couplings
using modal multi-spectral wavefront reconstruction, Opt. Express
31, 19733-19745 (2023)
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Ultra-intense laser characterization

Least-squares in Zernike-Taylor basis

>
n, X x, X ny, ~ 1000x1000x100 numbers

Minimize l

Ax=y ——— arg ming |[Ax — Y||2}

Transform W to (truncated) Zernike-Taylor basis

arg min{ ||A¥F - y||*}

' T
Leading coefficients (<1000)

Much more robust reconstruction!

« A. Dopp et al. Data-driven Science and Machine Learning
Methods in Laser-Plasma Physics, High Power Laser Science
and Engineering 11 55 (2023) | arXiv:.2212.00026 (2022)



Ultra-intense laser characterization

Compressed sensing

>
n, X x, X ny, ~ 1000x1000x100 numbers

Minimize l

Ax=y ——— arg ming |[Ax — Y||2}

Transform to some sparse basis
(e.g. wavelet, PCA, etc.)

arg min{ [[APX — y||* + || %]}

T

Few coefficients as possible

« A. Dopp et al. Data-driven Science and Machine Learning
Methods in Laser-Plasma Physics, High Power Laser Science
and Engineering 11 55 (2023) | arXiv:.2212.00026 (2022)



Ultra-intense laser characterization

Deep compressed sensing

>
n, X x, X ny, ~ 1000x1000x100 numbers

Minimize l

Ax=y ——— arg ming |[Ax — Y||2}

Transform to some sparse basis
(e.g. wavelet, PCA, etc.)

arg min{ [|APX — y||* + S())

T

Learnt reqularization
(Residual estimate)

« A. Dopp et al. Data-driven Science and Machine Learning
Methods in Laser-Plasma Physics, High Power Laser Science
and Engineering 11 55 (2023) | arXiv:.2212.00026 (2022)



Ultra-intense laser characterization

Deep compressed sensing

Ax =y
X = argmin{|[A¥X — 162

1. S. Howard et al. Hyperspectral Compressive Wavefront Sensing, High Power Laser Science and Engineering, 2023, 11(3):32



Bayesian optimization —
More on Bayesian optimization

Sequential model-based optimization tomorrow in WG7!

® Evaluated points — == Ground truth =—— GP mean GP std - EI — MES — UCB (k = 2)

1. Build model 3. Build nhew model 5. ...

y(x)

2. Choose new point 4. Choose new point

/ oV

a(x)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0



Multi-objective multi-fidelity optimization

Optimization of electron beam properties (FBPIC simulations)

 Different metrics

 We want to optimize three electron beam > .
)
10 - O (a)
. — 2 .
parameters: E N Qin — ¢
° Charge Q (total charge, charge within FWHM, etc.) % 5 \/a \\’ i
: VIAE|-Eyap _
e Bandwidth (standard deviation or, median absolute Sjo E
— _&
. <
deviation E,,;.n, €tc.) Y
MAD Cr‘-—:‘) 0 ——— | | —1

« Distance to a target ener E — E | wsi
J 9y | target ‘ e . Different weights

mean energy, median energy, peak energy, etc.)

« Choosing different metrics or weights for each
objective changes the outcome in an a priori

unknown way!

* Instead we want to make a survey and learn the

O T L - | ' | |
trade-offs between all objectives (Pareto 200 250 300 350 400

optimization) Energy [MeV]

* Irshad, F., Karsch, S., & Dopp, A. Multi-objective and multi-fidelity Bayesian optimization of
laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)



Multi-objective multi-fidelity optimization ,
See Faran’'s talk tomorrow

Optimization of electron beam properties (Experiment) at 17:40 in WG7

8-D optimization:
« Jetfocus & height,
« Blade focus & height,

 Dispersion (¢, ¢35, ¢,)
Gas Pressure

(Model chooses shot number dynamically)
Spectra at one position

Focusing
mirror

Gaussian Mixture Model

l

Extract objective values (Q, ur, og, -..)

l

Gaussian Process Model

l

Expected Hypervolume Improvement

-

1“‘
g
1
) |
gy
\

Tango controls [«

« F. Irshad, et al. Pareto Optimization of a Laser Wakefield
Accelerator (under review)



Multi-objective multi-fidelity optimization

Optimization of electron beam properties (Experiment)

400
* Once the Pareto-optimal solutions are identified,
we can choose from them what kind of beam we 350
50
want. 300 =
>
 We observe that many of the Pareto-optimal > 250) >
. . 2 40 5
solutions yield the same laser-to-beam z S
o - 200 =
efficiency. o0 =
. . 2 150 - 30 >
« Lower energy spread results in lower efficiency, [f] %‘3
I.e. is mostly a filtering effect 100 - 3
50
0 10

400 600 800 1000 1200 1400
Charge [pC]

« F. Irshad, et al. Pareto Optimization of a Laser Wakefield
Accelerator (under review)



Summary

Implemented a

system based on .
TANGO controls in TR
CALA - ==

-p - g i
T y—" b...»

L Al — V.
.: ﬁ”«-“-f"l St

i s

LN , Off-the-shelf” ML:
¢ % . Fine-tuned YOLO
e | -."" 222 QObject Detection to
work with data from
experiments

coherent control | | Demonstrated Few-

& E-! Shot Spatio-Temporal
Characterization in a
Zernike-Taylor Basis

Demonstrated
tuning of a laser-
plasma accelerator with
Bayesian optimization
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Thank you for your attention!
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