
Aarón Alejo 
aaron.alejo@usc.es

Advancement in plasma sources towards high
repetition rate operation

6th European Advanced Accelerator Concepts workshop September 2023



Acknowledgements

6th EAAC | September 2023 | 1 of 26

Chris Thornton, Nic Bourgeois
Rutherford Appleton Laboratory

Alex Picksley, James Cowley, Chris Arran, Alexander Boetticher, Oscar Jakobsson, 
Jakob Jonnerby, Rob Shalloo, Roman Walczak, Simon Hooker

John Adams Institute for Accelerator Science, University of Oxford

Harry Jones, Laura Corner
Cockcroft Institute, University of Liverpool



Laser Plasma Accelerators
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→Conventional accelerators are ubiquitous in
science, medicine and industry

→Typically, these accelerators are based on
accelerator cavities, which can withstand up
to ≲100 MV/m

→Laser plasma accelerators, driven by intense
laser plasmas, can support up to 100s GV/m

⇒ Reduction in size, cost and shielding needs

→However, users of accelerators have requirements beyond the current LPA, such as
operation at kHz-rates



Outline

• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

• Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised 
(CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate
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Requirements for a suitable waveguide
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→ The acceleration length of a LPA can be extended by using plasma channels

→ Similar to GRIN optical fibers, propagating through a transverse electron density profile with a minimum on-axis
can counteract diffraction

→ Different techniques have been studied as waveguides, including capillary discharge waveguides or self-guiding

Required parameters



Waveguides from expansion of a plasma column
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→ Plasma channels can be formed from the hydrodynamic expansion of a laser generated plasma column
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§ A secondary laser pulse is used to pre-ionize the gas
(τ≅100 ps, I≅1013Wcm-2)

§ Pioneering work based on electron heating via inverse
Bremsstrahlung ⇒ ne ≥ 1019 cm-3

§ Plasma channels are free-standing making them ideal for
high repetition rate operation

[Durfee & Milchberg, PRL (1993); Durfee et al., PRE (1995); Clark & Milchberg, PRL (1997)]



HOFI Channels
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→ Hydrodynamic Optical-Field-Ionisation (HOFI) Channels are waveguides specifically
suited for low density, high repetition rate operation
→ Plasma column formed and heated by optical field ionisation (residual energy

after process of tunnelling ionisation)
→ OFI acts on the atomic level ⇒ electron heating independent of the initial

density
→ Electron temperature set only by the gas species (kBTe ≅ 10 eV for H)

[Shalloo et al., Phys. Rev. E 97  (2018); Lemos et al. PoP 20.6 (2013); Lemos et al. PoP 20.10 (2013)]

→ Formation of plasma channels shown using
MHD simulations

→ Evolution expected to follow the Sedov-
Taylor blast wave theory



HOFI Channels. Proof-of-principle
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→ Proof-of-principle experiment to demonstrate viability of HOFI channels
→ HOFI channel generated by lens-focusing a TW laser (few mm in length)
→ Characterized through longitudinal probing

[Shalloo et al., Phys. Rev. E 97  (2018)]

Closely matches Sedov-Taylor blast
wave theory for kBTe = 9.2 eV

Heating independent
of initial density

Only a few mJ per mm of channel



Outline
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Axicon Line focus forming 
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Beam

Guiding by Long, Low-density HOFI Channels
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→ Experiment to demonstrate HOFI plasma channels guiding high-
intensity, joule-level pulses (Gemini TA3, CLF–RAL, 2019)

→ Longer plasma columns can be produced by optics with longer focal
range ⇒ Axicons
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→ Experiment to demonstrate HOFI plasma channels guiding high-
intensity, joule-level pulses (Gemini TA3, CLF–RAL, 2019)

→ Longer plasma columns can be produced by optics with longer focal
range ⇒ Axicons

→ Previously demonstrated to generate hydrodynamic channels by
Milchberg et al. [PRL 71(15), 1993]

→ Alternatives to axicons are begin actively studied, such as phase
plates or axiparabolae

[S. Smartsev et al. (2019). Optics letters, 44(14), 3414]
[J.E. Shrock et al. Phys. Plasmas 29, 073101 (2022)]

Cedric Thaury’s talk on Wednesday morning
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Channel-forming pulse:
• 45 ± 3 fs
• Circular Polarisation
• 𝐼!" = 5 × 10#$W cm%&

Guided Pulse
• ℰ = 1.1 J
• 45 ± 3 fs
• Focused by f/40
• 𝐼'(!) ≈ 6 × 10#*W cm%&

From f/40

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8), 81303]

→ Experiment to demonstrate HOFI plasma channels guiding high-
intensity, joule-level pulses (Gemini TA3, CLF–RAL, 2019)

→ Longer plasma columns can be produced by optics with longer focal
range ⇒ Axicons



HOFI Channels – Density profile
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Measured evolution of an axicon-
formed HOFI plasma channel

Phase Map
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To guided 
beam diagnostics

→ Plasma density was characterized using transverse optical probing

→ Analysis routine developed to allow profile retrieval

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8), 81303, R. Shalloo et al., Phys. Rev. Accel. Beams 22 (2019)]

ne ≅ 1×1017 cm-3Low density ⇒ greater uncertainty
• Data tends to be noisier (low phase 

shift)
• The analysis requires a good background 

reference
• Abel inversion can amplify small levels 

of noise to yield large errors near axis
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Measured evolution of an axicon-
formed HOFI plasma channel
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→ Plasma density was characterized using transverse optical probing

→ Analysis routine developed to allow profile retrieval

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8), 81303, R. Shalloo et al., Phys. Rev. Accel. Beams 22 (2019)]

ne ≅ 1×1017 cm-3
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HOFI Channels – Transmission
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→In the low-intensity limit (a0≪1), zeroth
order mode of the channel follows,

T(z) = T(0) × exp(-z/Latt)

Energy coupled 
into 0th-order mode

Intensity drop of 0th

order due to leakage

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8);   Clark T. R., & Milchberg, H. M. (2000). PRE, 61(2)]
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→In the low-intensity limit (a0≪1), zeroth
order mode of the channel follows,

T(z) = T(0) × exp(-z/Latt)

Energy coupled 
into 0th-order mode

Intensity drop of 0th

order due to leakage

→Power attenuation length Latt≅84mm

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8);   Clark T. R., & Milchberg, H. M. (2000). PRE, 61(2)]
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→In the low-intensity limit (a0≪1), zeroth
order mode of the channel follows,

T(z) = T(0) × exp(-z/Latt)

Energy coupled 
into 0th-order mode

Intensity drop of 0th

order due to leakage

→Power attenuation length Latt≅84mm
→Experimental results match prediction

by Helmoltz solver considering measured
spot size and transverse density profile

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8);   Clark T. R., & Milchberg, H. M. (2000). PRE, 61(2)]
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→In the low-intensity limit (a0≪1), zeroth
order mode of the channel follows,

T(z) = T(0) × exp(-z/Latt)

Energy coupled 
into 0th-order mode

Intensity drop of 0th

order due to leakage

→Power attenuation length Latt≅84mm
→Experimental results match prediction

by Helmoltz solver considering measured
spot size and transverse density profile

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8);   Clark T. R., & Milchberg, H. M. (2000). PRE, 61(2)]
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Outline

• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

• Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised 
(CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate
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→ Transverse interferometry reveals guided pulse conditions the plasma channel to increase confinement

[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2020)]

→ Plasma density profiles indicate a clear enhancement of the channel depth



Conditioning of HOFI channels
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shock
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CHOFI 
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→ Conditioning → The leading edge of the drive pulse ionises

the surrounding neutral gas to increase the depth

→ Above-ambient densities are explained by the accumulation

of neutral gas in the regions close to the shock front

[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2020)]

→ 3D Flash simulations support the appearance of a

collar or neutrals

→ Effect also demonstrated by Morozov et al. in high

density short plasmas, and the Milchberg et al.

using 2-colour interferometry
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→ Conditioning → The leading edge of the drive pulse ionises

the surrounding neutral gas to increase the depth

→ Above-ambient densities are explained by the accumulation

of neutral gas in the regions close to the shock front

[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2020)]

→ 3D Flash simulations support the appearance of a

collar or neutrals

→ Effect also demonstrated by Morozov et al. in high

density short plasmas, and the Milchberg et al.

using 2-colour interferometry

[L. Feder et al. (2020) Physical Review Research, 2(4)]



Improved channel throughput
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• Varied input intensity and measured
the fractional energy transmission

• Observed > 60 % transmission at
highest input intensity.

[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2020)]

→ Throughput of CHOFI channels improves due to deepening, even for the conditioning pulse itself

→ The conditioning effect relies on ionization by guided pulse ⇒ mode transmission depends on its intensity

Input

Out/

Out/
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→ PIC Simulations (FBPIC) of propagation of intense pulse through 340mm-long CHOFI waveguide
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[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2021)]

321.40
z (mm)

→ PIC Simulations (FBPIC) of propagation of intense pulse through 340mm-long CHOFI waveguide

Dominant loss: 
leakage in HOFI waveguide

Dominant loss:
plasma wave generation 

+ front edge etching

For a 1m long CHOFI waveguide:
∼500 mJ in the channel-forming pulse

+
Conditioning pulse depleting at 7mJ/cm

⇒ ∼1.2 J laser energy
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→ PIC Simulations (FBPIC) of propagation of intense pulse through 340mm-long CHOFI waveguide

Dominant loss: 
leakage in HOFI waveguide

Dominant loss:
plasma wave generation 

+ front edge etching

Required parameters

?
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• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

• Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised 
(CHOFI) plasma channels
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Operation at high rep-rate 
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→ Future accelerators are envisaged to be driven by ultra-intense lasers operating at kHz rates (today limited to few Hz)

→ Capillary discharges are prone to damage by laser. CD waveguides operating at kHz rates have been demonstrated, but not
guiding of intense pulses at such rates [A. Gonsalves et al. (2016), Journal of Applied Physics, 119(3)]

→ HOFI channels are free-standing, in principle having the potential to operate at high repetition rates for extended periods of
time

→ However, potential limitations such as gas evolution, heating, or unstable operation may limit the actual rate ⇒ Need to
demonstrate this experimentally



Operation at high rep-rate 
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→ Experiment carried out using the 1mJ, 1kHz front—end of the Oxford-X laser (University of Oxford)

→ Pulse picker implemented in the beamline to overcome limitations of interferometry camera

Pulse picker

1ms
tseq=1/fseq

τ probe CCD gatepump



Generation of HOFI Channels at kHz rates
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→ Operation at kHz rates was initially demonstrated by showing that two consecutive pulses (1ms) would generate identical channels

Channel generated 
by pulse 1
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→ Operation at kHz rates was initially demonstrated by showing that two consecutive pulses (1ms) would generate identical channels

Channel generated 
by pulse 1

Channel generated 
by pulse 2

Plasma density 
before arrival of P2

Density profiles generated by the two consecutive pulses are identical 

⇒ kHz-operation ready

[A. Alejo et al., Phys. Rev. Accel. Beams 25 (2022)]



Long-term stability of HOFI channels
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→ Long-term stability of the operation of HOFI channels at HRR (0.4kHz, limited by diagnostic) was
studied for a period of 6.5 hours

→ Channels measured 1.5ns after the passing of the channel-forming pulse

→ Slow heating of the gas will not have a deleterious effect on the channels for mean repetition rates
at least up to 0.4kHz
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→ The evolution of the most relevant parameters was characterized throughout
the 6.5 hour period, showing the stability and robustness of HOFI channels

→ Showing 50-point moving average (solid line) and rms (shaded area)

→ Energy, pointing, and spatial phase of the laser were not stabilized, however
HOFI is expected to be robust with respect to laser fluctuations

ne(rshock)≅2.1×1018cm-3rshock≅11.5µm ne(rshock)≅5.7×1018cm-3

Shock radius Density at shock front On-axis density
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Apparent drift of channel position caused by a 
drift in the position of the probe beam

→ The evolution of the most relevant parameters was characterized throughout
the 6.5 hour period, showing the stability and robustness of HOFI channels

→ Showing 50-point moving average (solid line) and rms (shaded area)

→ Energy, pointing, and spatial phase of the laser were not stabilized, however
HOFI is expected to be robust with respect to laser fluctuations
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→ The evolution of the most relevant parameters was characterized throughout
the 6.5 hour period, showing the stability and robustness of HOFI channels

→ Showing 50-point moving average (solid line) and rms (shaded area)

→ Energy, pointing, and spatial phase of the laser were not stabilized, however
HOFI is expected to be robust with respect to laser fluctuations

ne(rshock)≅2.1×1018cm-3rshock≅11.5µm ne(rshock)≅5.7×1018cm-3

Shock radius Density at shock front On-axis density

→ However, jitter is shown through Monte-Carlo modelling to be dominated by effects of noise in the measurement, rather than
being an actual measurement of the jittering of the channel parameters

Measured fluctuations (rms)

Predicted variations from 
the measured noise



Requirements for a suitable waveguide
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→ The acceleration length of a LPA can be extended by using plasma channels

→ Similar to GRIN optical fibers, propagating through a transverse electron density profile with a minimum on-axis
can counteract diffraction

→ Different techniques have been studied as waveguides, including capillary discharge waveguides or self-guiding

Required parameters

What’s next?



Future perspectives
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Electron acceleration in (C)HOFI channels

Targetry development Work on optical elements

1GeV from a 50TW-class laser
[K. Oubrerie et al. (2022). Light: Science & Applications, 11(1)]

Narrow-band 5GeV e- beam from 200mm channel
[B. Miao et al. (2022) Physical Review X, 12(3), 031038.]

Truncated-channel injection, Narrow-band 1GeV 
[A. Picksley (2023). arXiv:2307.13689]

Gas jets
High gas load, stability

Gas cells
Coupling of channel-forming

beam into cell

Hybrid solutions
Coupling of channel-forming

beam into cell

Axicons Axiparabolae Phase plates



Summary
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• A 10 GeV scale Laser Plasma Accelerator would need a 
suitable waveguide to operate

• Guiding of intense pulses in >100mm HOFI Channels

• Development of meter-scale, Conditioned Hydrodynamic 
Optical-Field-Ionised (CHOFI) plasma channels

• Operation of free-standing plasma channels at high 
repetition rate
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