

Advancement in plasma sources towards high repetition rate operation Aarón Alejo aaron.alejo@usc.es

UNIVERSITY OF

Alex Picksley, James Cowley, Chris Arran, Alexander Boetticher, Oscar Jakobsson, Jakob Jonnerby, Rob Shalloo, Roman Walczak, Simon Hooker *John Adams Institute for Accelerator Science, University of Oxford*

Chris Thornton, Nic Bourgeois *Rutherford Appleton Laboratory*

UNIVERSITY OF LIVERPOOL

Harry Jones, Laura Corner *Cockcroft Institute, University of Liverpool*

Acknowledgements

Engineering and Physical Sciences Research Council

Science and Technology Facilities Council

Laser Plasma Accelerators

- → Conventional accelerators are ubiquitous in science, medicine and industry
- →Typically, these accelerators are based on accelerator cavities, which can withstand up to $\lesssim 100 \text{ MV/m}$
- → Laser plasma accelerators, driven by intense laser plasmas, can support up to 100s GV/m

\Rightarrow Reduction in size, cost and shielding needs

→ However, users of accelerators have requirements beyond the current LPA, such as **operation at kHz-rates**

Outline

• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

• Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised (CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate

Outline

• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

 Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised (CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate

Requirements for a suitable waveguide

- \rightarrow The acceleration length of a LPA can be extended by using plasma channels
- → Similar to GRIN optical fibers, propagating through a transverse electron density profile with a minimum on-axis can counteract diffraction
- → Different techniques have been studied as waveguides, including capillary discharge waveguides or self-guiding

Required parameters

Intensity to be guided, I_{peak}	$\gtrsim 10^{18}~{ m W}{ m cm}^{-2}$
Matched spot-size, <i>w</i> _m	$10-100\mu{ m m}$
Axial density, n_{e0}	$\lesssim 10^{17}~{ m cm}^{-3}$
Length, $L_{\rm acc}$	0.25-1m
Channel shape, $n_{\rm e}(r)$	Tunable to match accelerator
Transmission $T(z = L_{acc})$	$\sim 100\%$
Gas species	Low-Z (H ₂ , He)
Repetition rate, f_{rep}	$\gtrsim 1{ m kHz}$
Lifetime	$> 10^8$ shots
Stability	High
Energy cost	$1 \lesssim 10\%$ of total stage energy
Diagnostic access	Transverse and longitudinal

Waveguides from expansion of a plasma column

 \rightarrow Plasma channels can be formed from the hydrodynamic expansion of a laser generated plasma column At moment of ionization... A few ns later...

EAAC | September 2023 | 7 of 26

HOFI Channels

- → Hydrodynamic Optical-Field-Ionisation (HOFI) Channels are waveguides specifically suited for low density, high repetition rate operation
 - → Plasma column formed and heated by **optical field ionisation** (residual energy after process of tunnelling ionisation)
 - \rightarrow OFI acts on the atomic level \Rightarrow electron heating independent of the initial density
 - \rightarrow Electron temperature set only by the gas species (k_BT_e \cong 10 eV for H)

- → Formation of plasma channels shown using MHD simulations
- \rightarrow Evolution expected to follow the Sedov-Taylor blast wave theory

HOFI Channels. Proof-of-principle

 \rightarrow Proof-of-principle experiment to demonstrate viability of HOFI channels

- → HOFI channel generated by lens-focusing a TW laser (few mm in length)
- \rightarrow Characterized through longitudinal probing

[Shalloo et al., Phys. Rev. E 97 (2018)]

Only a few mJ per mm of channel

Outline

• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

 Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised (CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate

Guiding by Long, Low-density HOFI Channels

- → Experiment to demonstrate HOFI plasma channels guiding highintensity, joule-level pulses (Gemini TA3, CLF-RAL, 2019)
- \rightarrow Longer plasma columns can be produced by optics with longer focal range \Rightarrow Axicons

Guiding by Long, Low-density HOFI Channels

- \rightarrow Experiment to demonstrate HOFI plasma channels guiding highintensity, joule-level pulses (Gemini TA3, CLF-RAL, 2019)
- \rightarrow Longer plasma columns can be produced by optics with longer focal range \Rightarrow Axicons
 - \rightarrow Previously demonstrated to generate hydrodynamic channels by Milchberg et al. [PRL 71(15), 1993]
 - \rightarrow Alternatives to axicons are begin actively studied, such as **phase** plates or axiparabolae

[J.E. Shrock et al. Phys. Plasmas 29, 073101 (2022)]

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8), 81303]

Cedric Thaury's talk on Wednesday morning oth EAAC | September 2023 | 11 of 26

Guiding by Long, Low-density HOFI Channels

HOFT Channels – Density profile

 \rightarrow Plasma density was characterized using transverse optical probing

- \rightarrow Analysis routine developed to allow profile retrieval
 - Phase Map

Low density \Rightarrow greater uncertainty

1

- Data tends to be noisier (low phase ٠ shift)
- The analysis requires a good background reference
- Abel inversion can amplify small levels of noise to yield large errors near axis

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8), 81303, R. Shalloo et al., Phys. Rev. Accel. Beams 22 (2019)]

6th EAAC | September 2023 | 12 of 26

HOFI Channels – Density profile

 \rightarrow Plasma density was characterized using transverse optical probing

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8), 81303, R. Shalloo et al., Phys. Rev. Accel. Beams 22 (2019)]

6th EAAC | September 2023 | 12 of 26

HOFI Channels – Guiding

z = 0 mm

HOFI Channels – Guiding

HOFI Channels – Guiding

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8), 81303]

[A. Picksley, A. Alejo, et al. (2020), PRAB 23(8); Clark T. R., & Milchberg, H. M. (2000). PRE, 61(2)]

- →In the low-intensity limit $(a_0 \ll 1)$, zeroth order mode of the channel follows,
 - $T(z) = T(0) \times exp(-z/L_{att})$

Energy coupled into 0th-order mode

Intensity drop of 0th order due to leakage

- \rightarrow Power attenuation length L_{att} \cong 84mm
- → Experimental results match prediction by Helmoltz solver considering measured spot size and transverse density profile

Outline

• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

• Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised (CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate

Conditioning of front channels

→ Transverse interferometry reveals guided pulse conditions the plasma channel to increase confinement

 $\rightarrow\,$ Plasma density profiles indicate a clear enhancement of the channel depth

Ambient H₂ 0.5Before 0 50100 1500 (μm) r6th EAAC | September 2023 | 16 of 26

Electron Density

[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2020)]

Conditioning of HOFI channels

- \rightarrow Conditioning \rightarrow The leading edge of the drive pulse ionises the surrounding neutral gas to increase the depth
- \rightarrow Above-ambient densities are explained by the accumulation of neutral gas in the regions close to the shock front

[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2020)]

- → 3D Flash simulations support the appearance of a collar or neutrals
- → Effect also demonstrated by Morozov *et al.* in high density short plasmas, and the Milchberg *et al.* using 2-colour interferometry

Conditioning of HOFI channels

- \rightarrow Conditioning \rightarrow The leading edge of the drive pulse ionises the surrounding neutral gas to increase the depth
- \rightarrow Above-ambient densities are explained by the accumulation of neutral gas in the regions close to the shock front

- → 3D Flash simulations support the appearance of a collar or neutrals
- → Effect also demonstrated by Morozov *et al.* in high density short plasmas, and the Milchberg *et al.* using 2-colour interferometry

[A. Picksley, A. Alejo *et al.*, Phys. Rev. E **102** (2020)]

 \rightarrow Throughput of CHOFI channels improves due to deepening, even for the conditioning pulse itself

- \rightarrow The conditioning effect relies on ionization by guided pulse \Rightarrow mode transmission depends on its intensity
- Varied input intensity and measured the fractional energy transmission
- Observed > 60 % transmission at ٠ highest input intensity.

[A. Picksley, A. Alejo *et al.*, Phys. Rev. E **102** (2020)]

Out High Intensity

 $z = 16 \,\mathrm{mm}$

6th EAAC | September 2023 | 18 of 26

 \rightarrow PIC Simulations (FBPIC) of propagation of intense pulse through 340mm-long CHOFI waveguide 150 $(10^{18} \text{ cm}^{-3})$ 100 50 (mµ) 0 14.0 $12.0_{(z-100)}^{(z-100)} M_{10}^{(z-100)} I$ $6.0_{10}^{(z-100)} I$ -50 -100 -150 1.96 101.80 321.40 2.00 z (mm) z (mm) z (mm) Shallow, leaky Deep CHOFI channel **HOFI** Channel with large radial extent Conditioning laser pulse is guided by HOFI and CHOFI channels

 \rightarrow PIC Simulations (FBPIC) of propagation of intense pulse through 340mm-long CHOFI waveguide

→ PIC Simulations (FBPIC) of propagation of intense pulse through 340mm-long CHOFI waveguide

[A. Picksley, A. Alejo et al., Phys. Rev. E 102 (2021)]

Outline

• Towards a 10 GeV scale Laser Plasma Accelerator

• Guiding of intense pulses in >100mm HOFI Channels

 Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised (CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate

Operation at high rep-rate

→ Future accelerators are envisaged to be driven by ultra-intense lasers operating at kHz rates (today limited to few Hz)

Intensity to be guided, I_{peak}	$\gtrsim 10^{18}~{ m W}{ m cm}^{-2}$
Matched spot-size, <i>w</i> _m	$10-100\mu{ m m}$
Axial density, <i>n</i> _{e0}	$\lesssim 10^{17}~{ m cm}^{-3}$
Length, $L_{\rm acc}$	$0.25-1\mathrm{m}$
Channel shape, $n_{e}(r)$	Tunable to match accelerator
Transmission $T(z = L_{acc})$	$\sim 100\%$
Gas species	Low-Z (H ₂ , He)
Repetition rate, f_{rep}	$\gtrsim 1{ m kHz}$
Lifetime	$> 10^8$ shots
Stability	High
Energy cost	$\lesssim 10\%$ of total stage energy
Diagnostic access	Transverse and longitudinal

- → Capillary discharges are prone to damage by laser. CD waveguides operating at kHz rates have been demonstrated, but not guiding of intense pulses at such rates [A. Gonsalves *et al.* (2016), Journal of Applied Physics, 119(3)]
- → HOFI channels are free-standing, in principle having the potential to operate at high repetition rates for extended periods of time
- → However, potential limitations such as gas evolution, heating, or unstable operation may limit the actual rate \Rightarrow Need to demonstrate this experimentally

Operation at high rep-rate

→ Experiment carried out using the 1mJ, 1kHz front—end of the Oxford-X laser (University of Oxford)

 \rightarrow Pulse picker implemented in the beamline to overcome limitations of interferometry camera

[A. Alejo et al., Phys. Rev. Accel. Beams 25 (2022)]

6th EAAC | September 2023 | 22 of 26

–1ms—–

pump _T probe CCD gate

 \rightarrow Operation at kHz rates was initially demonstrated by showing that two consecutive pulses (1ms) would generate identical channels

 \rightarrow Operation at kHz rates was initially demonstrated by showing that two consecutive pulses (1ms) would generate identical channels

 \rightarrow Operation at kHz rates was initially demonstrated by showing that two consecutive pulses (1ms) would generate identical channels

[A. Alejo et al., Phys. Rev. Accel. Beams 25 (2022)]

6th EAAC | September 2023 | 23 of 26

 \rightarrow Operation at kHz rates was initially demonstrated by showing that two consecutive pulses (1ms) would generate identical channels

[A. Alejo et al., Phys. Rev. Accel. Beams 25 (2022)]

6th EAAC | September 2023 | 23 of 26

- → Long-term stability of the operation of HOFI channels at HRR (0.4kHz, limited by diagnostic) was studied for a period of 6.5 hours
- \rightarrow Channels measured 1.5ns after the passing of the channel-forming pulse
- → Slow heating of the gas will not have a deleterious effect on the channels for mean repetition rates at least up to 0.4kHz

- → The evolution of the most relevant parameters was characterized throughout the 6.5 hour period, showing the **stability and robustness** of HOFI channels
- \rightarrow Showing 50-point moving average (solid line) and rms (shaded area)
- \rightarrow Energy, pointing, and spatial phase of the laser were not stabilized, however HOFI is expected to be robust with respect to laser fluctuations

- → The evolution of the most relevant parameters was characterized throughout the 6.5 hour period, showing the **stability and robustness** of HOFI channels
- \rightarrow Showing 50-point moving average (solid line) and rms (shaded area)
- \rightarrow Energy, pointing, and spatial phase of the laser were not stabilized, however HOFI is expected to be robust with respect to laser fluctuations

→ However, jitter is shown through Monte-Carlo modelling to be dominated by effects of noise in the measurement, rather than being an actual measurement of the jittering of the channel parameters

Requirements for a suitable waveguide

- \rightarrow The acceleration length of a LPA can be extended by using plasma channels
- → Similar to GRIN optical fibers, propagating through a transverse electron density profile with a minimum on-axis can counteract diffraction
- → Different techniques have been studied as waveguides, including capillary discharge waveguides or self-guiding

Required parameters

What's next?

6th EAAC | September 2023 | 24 of 26

Future perspectives

Electron acceleration in (C)HOFI channels

Narrow-band 5GeV e- beam from 200mm channel [B. Miao et al. (2022) Physical Review X, 12(3), 031038.]

1GeV from a 50TW-class laser [K. Oubrerie et al. (2022). Light: Science & Applications, 11(1)]

Truncated-channel injection, Narrow-band 1GeV [A. Picksley (2023). arXiv:2307.13689]

Targetry development

Hybrid solutions High gas load, stability Coupling of channel-forming Coupling of channel-forming beam into cell beam into cell

Work on optical elements

Axicons

Axiparabolae

Phase plates

Summary

• A 10 GeV scale Laser Plasma Accelerator would need a suitable waveguide to operate

• Guiding of intense pulses in >100mm HOFI Channels

• Development of meter-scale, Conditioned Hydrodynamic Optical-Field-Ionised (CHOFI) plasma channels

• Operation of free-standing plasma channels at high repetition rate

