

HALHF:

A Hybrid, Asymmetric, Linear Higgs Factory

Combining the strengths of RF and plasma-based accelerators

Carl A. Lindstrøm

University of Oslo

Brian Foster, Richard D'Arcy

DESY & University of Oxford

22 Sep 2023 | EAAC 2023 | Elba, Italy

Motivation: High energy physics risks becoming too expensive

> Post-LHC era approaches (~2040)

> Next: Electron–positron collider

> Precision studies of the Standard Model (Higgs, etc.)

> Estimated cost (Snowmass ITF):

> FCC-ee \approx \$14.6B

> ILC ≈ \$7.3B

International Linear Collider. Source: ILC

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

Future Circular Collider. Source: CERN

Solution: A plasma-based e+e- collider?

>Footprint of RF colliders dominated by main linacs: >Use plasma-based accelerators (GV/m) > Several proposals over the past decades: >Rosenzweig *et al.* (1996) >Pei *et al.* (2009) >Schroeder *et al.* (2010) >Adli et al. (2013) > Simplistic, but useful exercises to focus the R&D

>Some key challenges have been identified:

>Positron acceleration

>Energy efficiency

UNIVERSITY

OF OSLO

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

Source: Adli et al., Proc. Snowmass (2013)

Main problem: Positron acceleration in plasmas

>Plasmas = charge asymmetric

>No "blowout regime" for e^+

>Positron acceleration has been demonstrated.

> >Several schemes proposed to improve beam quality.

— but lack of e^+ test facilities

Source: Litos et al. Nature 515, 92 (2014), Corde et al. Nature 524, 442 (2015).

\neg	4	
1		
-		Be
\neg	3	ar
+		Ц
1		de
1		SU
]	2	Ĵ
4	~	
-		10
+) 0
+		\cap
Η	1	B
1		<u> </u>
]		
	0	
	Л	
٦	4	
-		
-		Be
-	3	Bear
-	3	Beam
- - -	3	Beam de
	3	Beam dens
	3	Beam density
	3	Beam density (
	3	Beam density (10
	3	Beam density (10 ¹⁰
	3	Beam density (10 ¹⁶ ci
	3 2 1	Beam density (10 ¹⁶ cm ⁻
	3 2 1	Beam density (10 ¹⁶ cm ⁻³)
	3 2 1	Beam density (10 ¹⁶ cm ⁻³)
	3 2 1	Beam density (10 ¹⁶ cm ⁻³)

Main problem: Positron acceleration in plasmas

10³

10²

 10^{1}

10⁰

 10^{-1}

 10^{-2}

 $= \eta_{extr} \tilde{Q} / \tilde{\varepsilon}_n$

 ${ ilde {\cal L}}_{{\sf P}}$

Mod

be

>Plasmas = charge asymmetric

>No "blowout regime" for e^+

> Positron acceleration has been demonstrated.

> >Several schemes proposed to improve beam quality. Dimensionless luminosity

— but lack of e^+ test facilities

- >Currently, *luminosity per power* still ~1000x below RF and e^- .
- >Main challenge: *Electron motion* (equivalent to ion motion for e^{-} , but plasma electrons are lighter)

UNIVERSITY

OF OSLO

Comparison of proposed positron schemes (+electron schemes and RF)

Source: Cao, Lindstrøm et al. arXiv.2309.10495 (2023)

Main problem: Positron acceleration in plasmas

 10^{3}

10²

 10^{1}

10⁰

 10^{-1}

 10^{-2}

Conventi

En

Ouasi-li

sim. (1

 $\eta_{extr}\tilde{Q}/\tilde{\varepsilon}_{n}$

 ${ ilde {\cal L}}_{{\sf P}}$

Mod

Dimensionless

>Plasmas = charge asymmetric

>No "blowout regime" for e^+

>Positron acceleration has been demonstrated.

> Several schemes proposed to improve beam quality.

- but lack of e^+ test facilities
- >Currently, *luminosity per power* still ~1000x below RF and e^- .
- >Main challenge: *Electron motion* (equivalent to ion motion for e^- , but plasma electrons are lighter)

UNIVERSITY

OF OSLO

Comparison of proposed positron schemes (+electron schemes and RF)

	e [−] nonlinear sim. (1.5 TeV)	lon-motion limit flat e [_] bunch at 1 TeV (arg
2 4 6 Thursday 16:25) Talk (Thursday 16:25) Acceleration of posit	trons in p	asmas
with high energy efficiency of the second se	cole Polyte	echnique)
channel (1.5 G	ollow eV)	100 Non-relativistic electron-mo limit for round <i>e</i> ⁺ bunch at 1
	Laser-augmented blowout (10 GeV)	
10 ⁻¹ Normalized accelera	ating field, E_z/E_0	10 ⁰

Source: Cao, Lindstrøm et al. arXiv.2309.10495 (2023)

The pragmatic approach: use plasma to accelerate electrons but RF to accelerate positrons

UNIVERSITY OF OSLO

Can we use asymmetric e+/e- energies?

> Minimum centre-of-mass energy required for Higgs factory:

- > Electron (E_e) and positron energies (E_p) must follow: $E_e E_p = s/4$ > However, the collision products are boosted (γ): $\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right)$
- > A reasonable (but not necessarily optimized) choice is:
 > Electrons (from PWFA): *E_e* = 500 GeV (4x higher)
 > Positrons (from RF accelerator): *E_p* = 31 GeV (4x lower)
 > Boost: $\gamma \approx 3$

For Higgs factory: $\sqrt{s} \approx 250 \text{ GeV}$

Page 6

U

Simulating asymmetric e^+/e^- collisions

>GUINEA-PIG beam-beam simulations:

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} \ (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13

Use shorter bunches to compensate for smaller IP beta functions

>Asymmetric energies give similar luminosity >However, more power is required (to boost the collision products)

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

UNIVERSITY **OF OSLO**

Mitigating the power-efficiency problem: Asymmetric charge

>The luminosity scales as: $\mathscr{L} \sim N_p N_e$ >Can we use more (low-energy) positrons and less (high-energy) electrons?

>Unchanged power usage if $N_e/N_p = E_p/E_e$ (here: 4x more e^+ , 4x less e^-)

>But, producing positrons is problematic—instead use 2x more e^+ , 2x less e^-

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	$\epsilon_{nx} (\mu m)$	$\epsilon_{ny} (nm)$	$\beta_x \text{ (mm)}$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25

UNIVERSITY OF OSLO

Yes

Going all-in: Asymmetric emittances ease beam-quality needs

> Geometric emittance scales as (energy)⁻¹ – how to achieve same beam size at IP?

$>e^+$ (lower energy) must have smaller IP beta function: 3.3/0.1 mm (like CLIC)

> Conversely, electrons can have a larger IP beta function

> Better yet — increase the e^- (normalised) emittance.

> Significantly reduces emittance requirements from PWFAs!

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} \ (\mathrm{nm})$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} \; (\mu \mathrm{b}^{-1})$	$ \mathcal{L}_{0.01} \ (\mu b^{-1}) $	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

OF OSLO

The foundation: A main RF linac

RF linac parameters			
Average gradient	MV/m	25	
Wall-plug-to-beam efficiency	%	50	
RF power usage	\mathbf{MW}	47.5	
Peak RF power per length	MW/m	21.4	
Cooling req. per length	kW/m	20	

- >RF linac length: ~1.3 km
- >Assumes 50% efficient acceleration
- >Gradient: 25 MV/m
- >Bunch-train pattern must be compatible with PWFA stages (constant density required):
 - >NCRF? Burst-mode (100 bunches @ 100 Hz)

>SCRF? Continuous wave (10 kHz)

3)	
	ŀ

The foundation: A main RF linac

RF linac parameters			
Average gradient	MV/m	25	
Wall-plug-to-beam efficiency	%	50	
RF power usage	\mathbf{MW}	47.5	
Peak RF power per length	MW/m	21.4	
Cooling req. per length	kW/m	20	

- >RF linac length: ~1.3 km
- >Assumes 50% efficient acceleration
- Talk (Thursday 16:25) >Gradient: 25 MV/m
- stages (constant den: at Megahertz repetition rates >Bunch-train pattern n Gregor Loisch (DESY)
 - >NCRF? Burst-moc. , ... Summers @ 100 Hz)

SCRF? Continuous wave (10 kHz)

3)	
	ŀ

The novelty: A multistage plasma-based linac

>Length: 16 PWFA stages (5-m long): ~400 m total length >Gradient: 6.4 GV/m (in plasma) – 1.2 GV/m (average) >Efficiency: 38% = 72% depletion, 53% wake extraction > No damping ring required due to high-emittance electrons

16

Simulated with Wake-T Plasma density: 7 x 10¹⁵ cm⁻³ Driver/witness charge: 4.3/1.6 nC

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible - not exact.

\$2.3–3.9B (\$4.6B from ITF model for RF accelerators) >US accounting ("TPC"):

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	cost		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^e$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

> Estimated **power usage is ~100 MW** (similar to ILC and CLIC):

>21 MW beam power + 27 MW losses + 2×10 MW damping rings + 50% for cooling/etc.

UNIVERSITY **OF OSLO**

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

>European accounting (2022 \$): ~\$1.9B (~1/4 of ILC TDR cost @ 250 GeV)

> Dominated by conventional collider costs (97%) — PWFA linac only ~3% of the cost

Innovations required: Plasma-accelerator R&D

> Toward high energy:

> Multi-stage driver distribution

From: Pfingstner et al. (Proc. IPAC 2016)

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

From: Steinke et al., Nature 530, 190 (2016).

Innovations required: Plasma-accelerator R&D

>Toward high energy:

>Multi-stage driver distribution

> Toward high beam quality:

> Transverse and longitudinal stability

> Spin-polarization preservation

From: Vieira et al. PR-STAB 14, 071303 (2011)

UNIVERSITY **OF OSLO**

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

From: Lindstrøm et al., PRL 126, 014801 (2021)

Innovations required: Plasma-accelerator R&D

>Toward high energy:

> Compact staging optics with quality preservation

> Multi-stage driver distribution

>Toward high beam quality:

>Transverse and longitudinal stability

- >Emittance and energy-spread preservation
- > Spin-polarization preservation
- > Toward high beam power:
 - > High-overall efficiency (wall-plug to beam)
 - > Repetition rate
 - > Plasma-cell cooling

>High-charge positron source (2x charge compared to ILC)

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

Sketch of ILC positron source

$e^+e^- \rightarrow Z(\mu^+\mu^-)H$ Innovations required tector of the fattened correct tracking.

> High-charge positron source (2x charge compared to ILC)

- > Detector optimised for asymptication of the proversion momentum
 - $\sigma_{\text{ILD}_{\odot}\text{HALHF}} = 2.2 \times \sigma_{\text{ILD}_{\odot}\text{ILC}}$

 $\sigma_{e-ILD_{@}HALHF} = 1.2 \times \sigma_{ILD_{@}ILC}$

UNIVERSITY **OF OSLO**

- >High-charge positron source (2x charge compared to ILC)
- > Detector optimised for asymmetric energies
- >Beam-delivery systems:
 - >Small beta functions (3.3 x 0.1 mm)
 - >Could it be shorter since the emittance is much higher? (would reduce HALHF footprint considerably)

UNIVERSITY **OF OSLO**

From: Raimondi & Seryi, PRL 86, 3779 (2001)

- >High-charge positron source (2x charge compared to ILC)
- > Detector optimised for asymmetric energies
- >Beam-delivery systems:
 - >Small beta functions (3.3 x 0.1 mm)
 - >Could it be shorter since the emittance is much higher? (would reduce HALHF footprint considerably)
- >High-efficiency (heavily beam loaded) RF linac with PWFA-compatible beams

UNIVERSITY OF OSLO

- >High-charge positron source (2x charge compared to ILC)
- > Detector optimised for asymmetric energies
- >Beam-delivery systems:
 - >Small beta functions (3.3 x 0.1 mm)
 - >Could it be shorter since the emittance is much higher? (would reduce HALHF footprint considerably)
- >High-efficiency (heavily beam loaded) RF linac with PWFA-compatible beams

>In short: **Conventional accelerator** expertise is required

Rough timeline for HALHF (and beyond)

>Near term (10–15 ys): Tech. demonstrator — strong-field QED and/or an X-ray FEL

Timeline (approximate/aspirational)							
0–5 years	5–10 years	10–15 years	15–25 years	25+ years			
Pre-CDR (HALHF) Simulation study to determine	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive) Demonst High wall-plug efficiency (e ⁻ driver polarization, high rep, rate, plasma	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e ⁻) tration of: rs), preserved beam quality & spin	(Facility upgrade) Higgs factory (HALHF) Asymmetric, plasma–RF hybrid	Feasibility study R&D (exp. & theory) HEP facility (earliest start of construction)			
self-consistent parameters (demonstration goals)	Energy-efficient positron ultra-low emittances, o	Demonstration of: acceleration in plasma, high wall-plug energy recovery schemes, compact b	g efficiency (laser drivers), beam-delivery systems	Multi-TeV e+–e-/γ–γ collider Symmetric, all-plasma-based collider (> 2 TeV c.o.m.)			

Beyond: Upgrade path toward multi-TeV — gamma-gamma collider?

> (Improve emittance, upgrade energy reach, build another electron arm)

UNIVERSITY **OF OSLO**

> Short term (0–5 ys): Pre-CDR (feasibility study) necessary to find self-consistent parameters

>Long term (15–25 ys): Delivery of HALHF — intense R&D required

Key areas of R&D for HALHF

>Conventional accelerator R&D:
 > High-charge positron source
 > Conventional e⁺/driver linac
 > Beam delivery system
 > Asymmetric detector/physics studies

>Plasma-accelerator R&D:

>High beam quality

>High-average-power plasma stages

>Staging to high energy

X-ray FEL: Possible mid-term application requiring high energy, quality, and rep rate

Image source: G. Stewart/SLAC.

ERC CoG application High-Average-Power Plasma-Wakefield Studies And Applications – Richard D'Arcy (University of Oxford, DESY)

Stepping stone: A near-term application to strong-field QED

> Strong-field QED experiments require:

> High energy (staging) and high stability (self-correction)

> But not high rep. rate, power, beam quality or polarization.

Source: Blackburn et al., Phys. Plasmas 25, 083108 (2018)

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

Stepping stone: A near-term application to strong-field QED

> Strong-field QED experiments require:

> High energy (staging) and high stability (self-correction)

> But not high rep. rate, power, beam quality or polarization.

> The SPARTA project will investigate and develop:

- 1. Nonlinear plasma lenses for achromatic staging
- 2. Self-correction mechanisms for passive stabilization
- 3. Blueprints for a strong-field QED machine.

UNIVERSITY **OF OSLO**

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

The SPARTA project

Staging of Plasma Accelerators for Realizing Timely Applications

Lindstrøm, arXiv:2104.14460

asma Spartans" rendered by AI

UNIVERSITY OF OSLO

The SPARTA project

Staging of Plasma Accelerators for Realizing Timely Applications

Currently recruiting postdocs and PhD students

(earliest start date Jan 2024)

Get in touch* if you are interested

* c.a.lindstrom@fys.uio.no

Current progress: HALHF in 2023 and beyond

Talk (Friday 11:30) The plans to prepare for the next European Strategy Rajeev Pattathil (RAL)

UNIVERSITY OF OSLO

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

Current progress: HALHF in 2023 and beyond

- discussed as possible "flagship"
- discussions on relation to wider plasma-accelerator research

>Presented at Lab Directors Group meeting (12–13 July 2023)

- compared to muon collider, ERL collider, RF and magnet technology
- discussions about avenues for funding (e.g., CERN, STFC, etc.)

>HALHF Collaboration Meeting (23 October 2023) start interaction/interface between plasma + RF + detector research

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

- discussions about collaboration with conventional collider experts (e.g., CLIC)

HALHF pre-CDR?

Conclusion – HALHF

> The HALHF concept proposes a compact, cheaper, possibly quicker Higgs factory

> Asymmetric energy — asymmetric charge — asymmetric emittance

> High risk/high reward: Less mature than RF, but cost is only "national-scale" (few \$B)

> Near-term demonstrator crucial to building credibility — strong-field QED machine

> Much targeted R&D still required (e.g., staging, beam quality, beam power)

> Currently assembling a collaboration with experts from plasma/RF/detectors

UNIVERSITY **OF OSLO**

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023)

Conclusion – HALHF

> The HALHF concept proposes a compact, cheaper, possibly quicker Higgs factory > Asymmetric energy — asymmetric charge — asymmetric emittance > High risk/high reward: Less mature than RF, but cost is only "national-scale" (few \$B) > Near-term demonstra QED machine PLEASE JOIN US! > Much targeted R&D still n power) HALHF Collaboration Meeting (23 Oct 2023) > Currently assembling etectors HALHF project page: https://jai.web.ox.ac.uk/node/3516526 **Turn-around loops** Positrc (31 GeV e⁺/drivers) SOURCE DE IINAC Electron Interaction point (5-31 GeV e⁺/drivers) (250 GeV c.o.m.) source <<<<< ⊨ **RF** linac Beam-delivery system Plasma-accelerator linac (5 GeV e⁻) Beam-delivery system Positron transfer line (500 GeV e⁻) (16 stages, ~32 GeV per stage) (31 GeV e⁺) with turn-around loop (31 GeV e⁺)

UNIVERSITY **OF OSLO**

Dr. Carl A. Lindstrøm | 22 Sep 2023 | EAAC 2023 | Elba, Italy

Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023)

