

EUROPEAN NETWORK FOR NOVEL ACCELERATOR

Beam Dynamics Simulation of a High Brightness RF C-band Photoinjector for Future EuPRAXIA@SPARC_LAB Upgrade*

G.J. Silvi^{1,2}[†], A.L. Bacci³, E. Chiadroni^{1,4}, M. Ferrario⁴, A. Giribono⁴, A. Mostacci^{1,2}, L. Faillace⁴, M. Rossetti Conti³, C. Vaccarezza⁴ ¹Sapienza University of Rome, 00161 Rome, Italy ²INFN-Sez. Roma 1, Rome, Italy ³INFN-Sez. Milano, 20133 Milano, Italy ⁴Frascati National Laboratories INFN-LNF, 00044 Frascati (RM), Italy

EuPRA

Nazionale di Fisica Nucleare

*ACKNOWLEDGEMENT - This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement No 101004730.

[†]gillesjacopo.silvi@uniroma1.it

Abstract:

High-brightness RF photo-injectors are crucial for generating high peak current and low transverse emittance electron beams, which are necessary for driving plasma Wake-field acceleration in advanced accelerator concepts and novel radiation sources. To enhance the EuPRAXIA@SPARC_LAB photo-injector for future upgrades, it is essential to investigate and assess the feasibility of achieving higher charge and multi-bunch working points, commonly referred to as the "comb configuration" for particle-driven Wake-field acceleration. A solution to reduce the photo-injector's footprint while preserving beam quality and brightness is to implement a C-band injector operating at 5.712 GHz. Evaluating the possibility of achieving a working point within the velocity bunching acceleration scheme is critical, as this will determine the degree of compression achievable with a full C-band injector. Start-to-end beam dynamics simulations will be conducted to identify the optimum configuration for the C-band photo-injector dedicated to particle-driven plasma-based acceleration.

EuPRAXIA@SPARC_LAB

EuPRAXIA@SPARC_LAB full S-band RF injector

EuPRAXIA@SPARC_LAB is the first European research infrastructure to demonstrate the usability of a plasma accelerator combining a high-brightness GeV-range electron beam generated in a state-of-the-art linac, and a 0.5 PW-class laser system. The main challenge of EuPRAXIA@SPARC_LAB LAB is producing a high-brightness plasma accelerated beam to induce Self Amplified Spontaneous Emission (SASE) in an FEL undulator.

EuPRAXIA@SPARC_LAB C-band RF Gun and single bunch simulations

The proposal of the RF injector consists of a C-band RF Gun (5,712 GHz) followed by four C-band TW accelerating structures 2 m long. The first and second accelerating structures exploit the velocity bunching regime both with the "comb" and single bunch configuration.

not provide sufficient compression of the bunches at the photo injector exit Δ .

EuPRAXIA@SPARC_LAB full C-band RF injector comb simulations

Beam parameters @ cathode	Witness	Driver
Spot Size	0.175 mm	0.35 mm
Bunch Length	220 fs	220 fs
Charge	30 pC	200 pC
Bunch separation	6.3 ps	

C-band Injector exit parameters	Witness	Driver
Bunch Length	3.4 µm	100 µm
Emittance	$0.48\mu\mathrm{m}$	1.40 µm
Energy spread	0.2 %	1.1 %
Bunch separation	0.22 ps	
Peak current	1.9 kA	0.3 kA

The witness dynamic is completely reproduced, comparing the results with the full S-band case. The driver bunch shows a different longitudinal dynamic and needs to be optimized to achieve the correct length and reduce the energy spread.

