Coherence and superradiance from a plasmabased quasiparticle accelerator

B. Malaca^I,

M. Pardal¹, D. Ramsey², J. Pierce³, K. Weichmann³,

W. B. Mori³, R. Fonseca^{1,4}, I. A. Andriyash⁵, J.P. Palastro², J. Vieira¹

¹GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal
 ²University of Rochester, Laboratory for Laser Energetics, Rochester, New York, 14623, USA
 ³Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
 ⁴DCTI/ISCTE Instituto Universitário de Lisboa, Lisbon, Portugal
 ⁵LOA, École Polytechnique, ENSTA Paris, CNRS, Institut Polytechnique de
 Paris, 91762 Palaiseau, France

B. Malaca et al, 2023 (accepted, Nature Photonics), arxiv 2301.11082

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

B. Malaca | EAAC | September 21, 2023

-

The role of collective motion in advanced light sources

New light source concept based on collective effects

Unexplored temporally coherent and superradiant regimes

Examples in plasma acceleration

Broadband and Narrowband emission

Brightness estimates

Conclusions

Collective motion is critical to advanced light sources

Collective motion enables amplification in an free electron laser (FEL)

Decoupling collective and single particle trajectories

The role of collective motion in advanced light sources

New light source concept based on collective effects

Unexplored temporally coherent and superradiant regimes

Examples in plasma acceleration

Broadband and Narrowband emission

Brightness estimates

Conclusions

The collective trajectory determines the radiation spectrum

Emission from a collective feature*

Radiated intensity per frequency per solid angle according to a current density $\mathbf{j}[\mathbf{r},t]$

$$\frac{d^2 I}{d\omega d\Omega} = \frac{\omega^2}{4\pi^2 c^3} \left| \int d\mathbf{r} \int dt \mathbf{n} \times \{\mathbf{n} \times \mathbf{j}[\mathbf{r}, t]\} \exp[i\omega(t - \mathbf{n} \cdot \mathbf{r}/c)] \right|^2$$

The expression can be simplified!

Radiated intensity per frequency per solid angle according to a current density $\mathbf{j}[\mathbf{r}, t] = \mathbf{j}[\mathbf{r} - \mathbf{r}_{\mathbf{c}}(t), t] = \mathbf{j}[\boldsymbol{\xi}, t]$

 $\frac{d^2 I}{d\omega d\Omega} = \frac{\omega^2}{4\pi^2 c^3} \,\mathcal{S}(\omega,\Omega) \left| \int dt \exp[i\omega(t-\mathbf{n}\cdot\mathbf{r_c}(t)/c)] \right|^2$

 $\mathcal{S}(\omega, \Omega)$ is the shape factor of the collective object

The collective trajectory: the driver of superradiance

 $\mathbf{r}_{c}(t)$ determines all of the temporal coherence properties

Quasiparticle trajectory determines the radiation spectrum

Emission from a quasiparticle

Radiated intensity per frequency per solid angle according to a current density $\mathbf{j}[\mathbf{r},t]$

$$\frac{d^2 I}{d\omega d\Omega} = \frac{\omega^2}{4\pi^2 c^3} \left| \int d\mathbf{r} \int dt \mathbf{n} \times \{\mathbf{n} \times \mathbf{j}[\mathbf{r}, t]\} \exp[i\omega(t - \mathbf{n} \cdot \mathbf{r}/c)] \right|^2$$

The expression can be simplified!

Radiated intensity per frequency per solid angle according to a current density $\mathbf{j}[\mathbf{r}, t] = \mathbf{j}[\mathbf{r} - \mathbf{r}_{\mathbf{c}}(t), t] = \mathbf{j}[\boldsymbol{\xi}, t]$

 $\frac{d^2 I}{d\omega d\Omega} = \frac{\omega^2}{4\pi^2 c^3} \,\mathcal{S}(\omega,\Omega) \left|\int dt \exp[i\omega(t-\mathbf{n}\cdot\mathbf{r_c}(t)/c)]\right|^2$

 $\mathcal{S}(\omega, \Omega)$ is the shape factor of the quasiparticle

The quasiparticle: the driver of superradiance

 $\mathbf{r}_{c}(t)$ determines all of the temporal coherence properties

Collective motion (quasiparticle)

$$\frac{d^2 I}{d\omega d\Omega} = \frac{\omega^2}{4\pi^2 c^3} |\int \mathrm{d}t \boldsymbol{\mathcal{S}} e^{i\omega[t-\mathbf{n}\cdot\mathbf{r}_c(t)/c]}|^2$$

Single electron

$$\frac{d^2 I}{d\omega d\Omega} = \frac{\omega^2}{4\pi^2 c^3} |\int dt \mathbf{n} \times (\mathbf{n} \times \mathbf{v}) e^{i\omega[t - \mathbf{n} \cdot \mathbf{r}_c(t)/c]}|^2$$

B. Malaca | EAAC | September 21, 2023

10

B. Malaca | EAAC | September 21, 2023

A quasiparticle radiates like a a finite-sized **single** particle for radiation wavelengths longer than its size, regardless of the microscopic e- trajectories

The role of collective motion in advanced light sources

New light source concept based on collective effects

Unexplored temporally coherent and superradiant regimes

Examples in plasma acceleration

Broadband and Narrowband emission

Brightness estimates

Conclusions

OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
- Extended physics/simulation models **RaDiO**

OSIRIS open source available

Open-source model

- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0

- The code can be used freely by
- research institutions
- Find out more at:
 - https://osiris-code.github.io/

Ricardo Fonseca: <u>ricardo.fonseca@tecnico.ulisboa.pt</u>

A superluminal quasiparticle

*X. L. Xu and W.B. Mori, PRAB **20**, 111303 (2017)

 $(\beta_n - 1) \approx n(\beta_1 - 1)$ $\mathbf{r}_{\mathbf{c},n}(t) = v_n t \mathbf{e}_{\parallel}$ Each successive quasiparticle travels faster!

$$\left|\int_{-T/2}^{T/2} dt \exp[i\omega(t-\mathbf{n}\cdot\mathbf{r}_{\mathbf{c},n}(t)/c)]\right|^2 = T^2 \operatorname{sinc}^2\left[\frac{\omega T}{2}\left(1-\frac{\nu_n \cos\theta}{c}\right)\right]$$

Coherent emission when
$$\cos\theta = \frac{c}{v_n}$$

This is an example of a Cherenkov emission at multiple angles using collective dynamics!

We get radiation data at runtime using RaDiO*

PIC Codes and Lienard-Wiechert Fields

Particles exist in a **grid** which intermediates **EM** interactions.

The PIC grid resolves the particle's motion, **but** relativistic particles ($\gamma > 100$) emit short wavelengths

Resolving such wavelengths in the PIC grid would require $\sim \gamma^2$ more cells

The Liénard-Wiechert Potentials **allow us** to capture radiation **without increasing** the PIC resolution

$$\mathbf{E}(\mathbf{x}, t_{det}) = \frac{q_e}{c} \left[\frac{\mathbf{n} \times [(\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}})]}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^3 R} \right]_{ret}$$

*M. Pardal, et al, Computer Physics Communications, 285, (2022)

The quasiparticle theory agrees with simulations

*S. Diederichs et al, PoP **30**, 073104 (2023)

The quasiparticle theory agrees with simulations

An LWFA quasiparticle is possible

Radiation from the quasiparticle can be measured

- The radiated power above $3\omega_0$ is 4 times higher in the quasiparticle than in the direct laser interaction
- The quasiparticle emission would be measurable in laboratory conditions

The role of collective motion in advanced light sources

New light source concept based on collective effects

Unexplored temporally coherent and superradiant regimes

Examples in plasma acceleration

Broadband and **Narrowband** emission

Brightness estimates

Conclusions

Narrow bandwidth emission

$$I(\omega, \Omega) \propto T^2 \sum_{n=-\infty}^{\infty} J_n^2 \left[\frac{A\omega}{c} \cos(\theta) \right] \times$$

such as $\sin \omega_b x$

$$\times \operatorname{sinc}^{2} \left[\frac{T}{2} \left(\omega - \frac{n \omega_{b}}{1 - \frac{v_{c}}{c} \cos(\theta)} \right) \right]$$

depths)

Narrow bandwidth temporally coherent emission

Quasiparticle undulator radiation ($r_c(t) \approx vt + A \sin \omega_b t e_x$)

$$I(\omega, \Omega) \propto T^2 \sum_{n=-\infty}^{\infty} J_n^2 \left[\frac{A\omega}{c} \cos(\theta) \right] \times$$

Sinusoidal density modulation such as $sin\omega_b x$

$$\times \operatorname{sinc}^{2} \left[\frac{T}{2} \left(\omega - \frac{n \omega_{b}}{1 - \frac{v_{c}}{c} \cos(\theta)} \right) \right]$$

(wavelength ~60 plasma skin depths)

Experimental demonstration of ionisation induced plasma density gratings

C. Zhang et al., PPCF 63 095011 (2021)

The role of collective motion in advanced light sources

New light source concept based on collective effects

Unexplored temporally coherent and superradiant regimes

Examples in plasma acceleration

Broadband and Narrowband emission

Brightness estimates

Conclusions

Quasiparticles are a tuneable and bright source of radiation

P. O'Shea, H.P. Freund, Science **292** 1853 (2001)

The role of collective motion in advanced light sources

New light source concept based on collective effects

Unexplored temporally coherent and superradiant regimes

Examples in plasma acceleration

Broadband and Narrowband emission

Brightness estimates

Conclusions

Conclusions

Thank you for listening. Questions?

Trajectory of the QP defines the spectrum

$$\frac{d^{2}I}{d\omega d\Omega} = \left| \int dt \exp[i\omega(t - \mathbf{n} \cdot \mathbf{r}_{\mathbf{c}}(t)/c)] \right|^{2} \times \mathcal{S}(\omega, \Omega)$$
Contribution of the quasiparticle trajectory
QP shape factor

Very bright radiation production

B. Malaca et al, 2023 (accepted, Nature Photonics), arxiv 2301.11082

Backup slides

RaDiO's algorithm*

PIC Codes and Lienard-Wiechert Fields

Particles exist in a **grid** which intermediates **EM** interactions.

The PIC grid resolves the particle's motion, **but** relativistic particles ($\gamma > 100$) emit short wavelengths

Resolving such wavelengths in the PIC grid would require $\sim \gamma^2$ more cells

The Liénard-Wiechert Potentials **allow us** to capture radiation **without increasing** the PIC resolution

$$\mathbf{E}(\mathbf{x}, t_{det}) = \frac{q_e}{c} \left[\frac{\mathbf{n} \times [(\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}})]}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^3 R} \right]_{ret}$$

*M. Pardal, et al, Computer Physics Communications, 285, (2022)

Practical limits may prevent brighter radiation at high frequencies U

The evidence suggests the size of the quasiparticle decreases with the blowout radius (can we create quasiparticles with 1 nm length?)

At the same plasma frequency, a more intense driver will lead to larger frequencies.

Variance in the speed

If the speed changes with time, the time over which the growth is quadratic is limited (can we design a more stable trajectory?):

$$m \sim \frac{2\pi c}{\omega |\Delta v|}$$

All things equal, a more stable speed leads to larger brightnesses, and this effect acts on larger frequencies the most.

Very similar internal spectra lead to dramatically different emission U

Control run (flat profile)

No electric field builds coherently at the back of the wakefield

Coherent radiation emanates from the back of the wakefield at the angles predicted

Contribution from different quasiparticles

Superluminal quasiparticle is superradiant and broadband

Undulating quasiparticle spectrum becomes narrowband

$$\left|\int_{-T/2}^{T/2} dt \exp[i\omega(t-\mathbf{n}\cdot\mathbf{r}_{\mathbf{c}}(t)/c)]\right|^2 \propto$$

$$\propto T^2 \left| \sum_n J_n \left(\frac{A\omega}{c} \cos(\theta) \right) \times sinc \left[\frac{T}{2} \left(\omega - \frac{n\omega_b}{1 - \overline{v}\cos(\theta)} \right) \right] \right|^2$$

$$-\mathbf{n}\cdot\mathbf{r_{c}}(t)/c)]\Big|^{2} \propto T^{2}sinc^{2}\left[\frac{\omega T}{2}\left(1-\frac{v_{c}\cos\theta}{c}\right)\right]$$

- This scales quadratically with the interaction time if $c/v = \cos\theta$
 - This is a collective Cherenkov-like effect!

Harmonic like behaviour!

The quasiparticle theory agrees with simulations

quasiparticles

Quasiparticles bridge the gap between plasma accelerators and FELs

Betatron temporally incoherent

 ~ 10 orders of magnitude

∕

