Transverse Instabilities in HALHF Acceleration Stages

Jian Bin Ben Chen, Carl Andreas Lindstrom, Erik Adli, Ole Gunnar Finnerud University of Oslo

Circumvent positron problem.
> Comparable luminosity and power to RF colliders.

Significant cost savings.

Introduction

A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration B. Foster, ${ }^{1,2, *}$ R. D'Arcy, ${ }^{1,2}$ and C. A. Lindstrøm ${ }^{3}$

- High e^{-}and low e^{+}energy to save cost on RF linac.
- Mitigate loss in efficiency of asymmetric energies by using large e^{+}beam charge and low e^{-}beam charge.
- Asymmetric emittances (high e^{-}emittance).
- Need to include transverse instabilities.
- Currently studying effects of self-correction.

Results and outlook

Self correction: Using magnetic chicanes to compress bunches to self-correct into a current profile that flattens the wakefield to damp energy spread and significantly increase timing tolerances.

Conclusion

- Study of 16 merged HALHF acceleration stages.
- Preliminary results indicate emittance growth, even though instabilities are likely damped by large energy spread.
- Model requires further upgrades and tests.
- Future work: apply this method to study self-correction using interstages.
- Also include jitter between stages

