Transverse Instabilities in HALHF Acceleration Stages

Jian Bin Ben Chen, Carl Andreas Lindstrøm, Erik Adli, Ole Gunnar Finnerud University of Oslo

Introduction

A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration

Results and outlook

Parameter	Unit	HALHF		ILC	CLIC
		e^-	e^+	e^-/e^+	e^{-}/e^{+}
Center-of-mass energy	${ m GeV}$	250		250	380
Center-of-mass boost		2.13		-	-
Bunches per train		100		1312	352
Train repetition rate	Hz	100		5	50
Average collision rate	kHz	10		6.6	17.6
Average linac gradient	MV/m	1200	25	16.9	51.7
Main linac length	km	0.41	1.25	7.4	3.5
Beam energy	${ m GeV}$	500	31.25	125	190
Bunch population	10^{10}	1	4	2	0.52
Average beam current	μA	16	64	21	15
Horizontal emittance (norm.)	μm	160	10	5	0.9
Vertical emittance (norm.)	μm	0.56	0.035	0.035	0.02
IP horizontal beta function	$\mathbf{m}\mathbf{m}$	3.3		13	9.2
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0.1		0.41	0.16
Bunch length	μm	75		300	70
Luminosity	${\rm cm}^{-2} {\rm s}^{-1}$	0.81×10^{34}		1.35×10^{34}	2.3×10^{34}
Luminosity fraction in top 1%		57%		73%	57%
Estimated total power usage	MW	100		111	168
Site length	km	3.3		20.5	11.4

B. Foster,^{1,2,*} R. D'Arcy,^{1,2} and C. A. Lindstrøm³

- High e⁻ and low e⁺ energy to save cost on RF linac.
- Mitigate loss in efficiency of asymmetric energies by using large e⁺ beam charge and low e⁻ beam charge.
- Asymmetric emittances (high e⁻ emittance).
- Need to include transverse instabilities.
- Currently studying effects of self-correction. \bullet

Stage 1

Methodology

Self correction: Using magnetic chicanes to compress bunches to self-correct into a current profile that flattens the wakefield to damp energy spread and significantly increase timing tolerances.

Conclusion

- Study of 16 merged HALHF acceleration stages.
- Preliminary results indicate emittance growth, even though instabilities are likely damped by large energy spread.
- Model requires further upgrades and tests.
- Future work: apply this method to study self-correction using interstages.

Also include jitter between stages

This work was supported by the Research Council of

