

"Bivoj / DiPOLE" as a pump source for high repetition rate laser particle accelerators

HiLASE Center

Institute of Physics of the Czech Academy of Sciences

6th EAAC Workshop 2023 La Biodola Bay, Elba, Italy

UPERLASERS FOR THE REAL WORLD

Outline

Introduction:

- 1) Hilase centre
- 2) 'Bivoj' cryogenically cooled multi-slab laser system

Recent upgrades:

- 3) 150J upgrade
- 4) Depolarization mitigation
- 5) SHG results
- 6) kW-class large aperture Faraday isolator
- 7) Beam shaping

Conclusion:

8) Summary

1. Hilase location

1. Hilase organization

- 3 research teams
- 700 m² of clean labs (ISO 8) & exp. halls
- Up & running since 2016
- ~100 staff
- International team

1. Hilase laser technologies

1. Hilase laser technologies

SUPERLASERS FOR THE REAL WORLD

2. Bivoj layout

P. Mason et al, "Kilowatt average power 100 J-level diode pumped solid state laser," Optica 4, 438-439 (2017)

ASERS FOR THE REAL WORL

2. 1st world record in 2016

- BIVOJ achieved 105 J @ 10 Hz for 6 J input
- Joint effort of STFC and HiLASE

2. LIDT in 2016

- Optics rated to 20 J/cm² failed at 1.5 J/cm²
- 1030 nm, 10 ns pulses, 10 Hz repetition rate

3. After 4 years of research

- HfO₂ optical coatings with new method of surface preparation
- Qualified for 5 J/cm² for 2"sample
- Tested at >3 J/cm² on 6" sample
- Crytur s.r.o. (AR)
- Manx Precision Optics Ltd. (HR)
- More manufacturers validated for 5 J/cm² since then

3. 2nd world record in 2021

- 40% increase of energy compare to maximum from 2016
- BIVOJ reached its full potential

3. 143 J @ 10 Hz for 60 mins

- 143 J for 60 mins
- without deformable mirror
- No damage, no power drop

Martin Divoký, et al., "150 J DPSSL operating at 1.5 kW level," Opt. Lett. 46, 5771-5773 (2021)

150

140

130

120

110 -

100

0

120 K

Output energy [J]

4. Depolarization in Bivoj in 2016

- Power loss ~ 30 %
- Beam shape ruined
- Polarization state useless for polarization sensitive experiments

4. Depolarization characterization

- Polarimetric measurement acquire full information about polarization properties of the system
- From measured polarization response, optimization of input and output polarization is possible
- Optimized method described by Lu and Chipman in 1996 (*)

4. Depolarization mitigation

- From 50% losses
- To 3% losses

PERLASERS FOR THE REAL WORL

Slezak, O., et al., "Thermal-stress-induced birefringence management of complex laser systems by means of polarimetry," Sci Rep 12, 18334 (2022).

5. SHG results

- SHG 515 nm
- Input 120 J (115 J in vertical polarization)
- Output 95 J @ 10 Hz
- LBO Type I

niose

• Efficiency 79% (82% without depolarization)

Divoky et al., "Kilowatt-class high energy frequency conversion to 95 J at 10 Hz at 515 nm." HPLSE, pp. 1-15., doi:10.1017/hpl.2023.60

100

95

90

80

75

70

65

60

[%] 85

Efficiency

Efficiency

re-alignmen

Shots

6000 8000 10000 12000 14000

135

120

105

Energy [J] 60

75

45

30

15

0

0

2000

4000

Input

5. High energy THG

- After stabilization
- 45 J @ 10 Hz several hours
- 55 J @ 10 Hz peak energy in the beginning of the run (several minutes)
- 49.5 J @ 10 Hz for several minutes, stable, lacked time for longer run
- Damaged diagnostic sampler

5. SHG & THG summary

145 J / 10 Hz / 10 ns @ 1030 nm (2021)

- **95 J / 10 Hz** / 10 ns @ 515 nm (2022)
- 55 J / 10 Hz / 10 ns @ 343 nm (2022)
- Benchmarking with complex model

6. Faraday isolator for Bivoj 100 J

- Cryogenically-cooled supraconductive magnet 3.5 T
- Farady rotator for 100 J / 1 kW / ns pulse isolation
- 1030 nm
- TGG magneto-optic crystals 69 x 69 x 3.6 mm³

6. Faraday isolator for Bivoj 100 J

7. Beam shaping

- Possibility to shape beam in time domain by pre-shaping the FFE pulse
 - Top head
 - Ramp
 - Gaussian
 - Half-gaussian

- Possibility to shape the beam trace in spatial domain by SLM in FE part
 - Square (different sizes)
 - Circle
 - Half-circle
 - Imprint a 'hole'

PALIESEK, T. et al., "Beam shaping in high-energy kW-class laser system Bivoj at HiLASE facility", HPLSE [accepted] (2023), ISSN 2052-3289

8. Summary

- Bivoj laser a unique tool
- Depolarization mitigation
- Complex numerical model of the laser
- Faraday isolator allows direct usage of 1030nm beam
- Beam-time available via Open access

