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Abstract: We sketch a preliminary analytical procedure [1,2] in 4 steps to tailor the initial density (upramp-+downramp+plateau) of a cold diluted plasma to the laser
pulse so as to control wave breakings (WBs) of the plasma wave (PW) and maximize the acceleration of the first electrons (e~s) self-injected in the PW by the first WB

at the down-ramp; the corresponding plateau density is uniquely determined. We use as long as possible the improved fully relativistic plane hydrodynamic model (HM)

of Ref. [3,4,5], modeling the pulse as a plane wave travelling in the z direction. Our (141)-dim results may help also in realistic (3+1)-dim problems.

I. Introduction and set-up

Nowadays the equations (Maxwell 4 kinetic the-
ory for electrons and ions) ruling plasma dynam-
ics in LWFA can be solved via more and more
powerful particle-in-cell (PIC) codes, but running
them has huge costs for each choice of the input
data. Hence it is crucial to do after a preliminary
data selection based on simpler models. Below
we sketch one maximizing the above LWFA.

We regard the plasma as long as possible as a
static background of ions and fully relativistic col-
lisionless fluid of e™s. Initial conditions for their
Eulerian density n,, velocity v,:

ve(0,x)=0,  n(0,x)=np(2); (1)
the initial e~ (and proton) density ng(z) satisfies

() < o, %<z>—{0 1Sl g

ng it 2>z,

for some ny>ny>0 and z,>0 (see Fig. ).
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We model the electric and magnetic fields E, B
as a plane wave propagating in the z-direction,
E(t,x)=€(ct—z), B=kxE (3
(x =zxi+yj+zk, c is the speed of light), where
the support of €(&) L k is an interval 0 < & <[
fulfilling [ < \/77m02 /npe? (neglect depletion).
{ny(z), €"(£)} = input data of our problem.

The position x(t) and momentum p(t) =
mcu(t) of an e~ fulfill the Lorentz eqs. Di-
mensionless variables: B = v/c = x/¢c, v =
1//1—=B2=+/1+u?, the 4-velocity u=(u",u)=
(v,vB). As v < ¢, we can make the change
t — & =ct—z of independent parameter along
the worldline (WL) of e~ (see Fig. 1), so that
the term €'|ct — z(t)|, where the unknown z(t)
is in the argument of the highly nonlinear and
rapidly varying e, becomes the known forcing
term €-(£). We denote as x(&) the position of
e as a function of &; it is determined by X(&) =
x(t). More generally given any f(t,x) we denote

f(&.%) = fl(€),%| (where ci(§) = &£+24(¢)).
abbreviate f = df/dt, fr=df /d& (total deriva-
tives). Convenient change of dependent variable
u® — s = the lightlike component of u [5]:

~

. o 048
=7—uw =u =v(1-p")=—7>0; 4
s=q—u = =A(l- ) =1 >0 (4)
v,u, B are the rational function of u; s
1+ut4ts? . 14+ut—¢? u
Y= y U= ) /B:_a (5)
25 28 Y

(5) hold also with " If 5(§) =0 as & T & < o0,
then 4, 4%, t— o0o. Replacing vd/dt — csd/dé
and putting " on all variables makes Lorentz eqs
rational in the unknowns ", 5. Moreover, § is
practically insensitive to fast oscillations of €*(£)
(see Fig. 2.b). Let x.(¢,X) = position at time
t of the e™ fluid element d°X initially located at
X=(X,Y.Z), x:.(£,X) = the same position as a
function of £&. We dub as ‘Z electrons’ the e™s
in the layer |2, Z+dZ| for t <0. In the hydro-
dynamic regime (HR) the maps x.(¢, ) : X — X,
X.(&, ) : X'+ x are one-to-one for all ¢, resp. &.
The inverses X (t, -), X (&, -) fulfill

X, (t,x) = X(ct—z, x). (6)
C) =ct-z ct | ;{:"/\‘ '?t+z
Cl=Cl jp N Y
3 b
Ct=Ct—“ """""_—"J":_;_: """""""""""""""""""""""""""""""""""
ct=0 b
e s

Figure 1:Two particle worldlines (WLs) A1, Ao in Minkowski
space; they intersect the support (pink) of a plane electro-
magnetic (EM) wave of total length [ in the positive z di-
rection. Since each WL intersects once every hyperplane
¢ = const (beside every hyperplane ¢t = const), we can use
¢ rather than ¢ as a parameter along it. The front, end of
the EM wave intersect different WLs at different ¢-instants
(t1i7#t2i, tir#tar), but at the same &-instants =0, £y =1.
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Figure 2:(a) Normalized gaussian pulse of FWHM I’=10.5,
linear polarization, peak amplitude ag=\eFE. /2nmc*=2.

(b) Corresponding solution of (12) if 7p(2) = nd = ne./267
(ner = m™mc?/e?M* is the critical density); as a result,
E/mc* = h=1.28. Adopting ng = n{) as the plateau density
maximizes the maximal | £*| in the PW, hence also the LWFA
of test electrons with the 'right’ phase. If A = 0.8um, then
peak intensity is / =1.7x10"W /cm? and n%:6.5 x10"%em .
(c) The corresponding electron phase portrait (at & > [).
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Figure 3: h—1 (energy gain per €7), j vs. the density 7.

Ax, = x.(t,X) — X actually depends only on
t, 7 land Ax, = X.(£,X)—X only on &, Z] and
by causality vanishes it ct < Z. We adopt the
x,y-independent physical observable

At,2) = —f t AWE ()

as the transverse component of the EM potential:

cE'=—0,A", B=kAOJ,A". As usual, (Lorentz

eq.)T and pr(0,x)=0=a*(—2z) if 2>0 imply
p. = A ie. u = LAL, (8)

C © mc?

for the Eulerian e~ momentum p., allowing to
trade u; for A* as an unknown. By (3), for ¢t <0

§
AL(t2) = a(ct—2), ac(§)=[—dne (m):(9

(9) approximately holds also for small ¢ > 0. The
conservation n. dz=nydZ of number of e gives:

no(t, 2) = o[ Zu(t,2)] D.2.(t, 2). (10

Maxwell eqs V- E—475" =0, F*~4me(n,—n.) =0,
0 F* [ etdnj*=(VAB)*=0 & in. cond. imply [5]

e

E(tz) = 4me {N(2)=N[Z.(t,2)|},  (11)

j=—en.B. , N(z)=[dnng(n). Via (10-11) we
express n., I/* through ng and the still unknown
Ze(t, z). (5c) amounts to X'=10’/8§, which inte-
grated yields X_ in terms of § = §.. The remain-
ing unknowns A(€,2)=2.(£,2)— Z, § satisty

" I1+v 1

A= ¢=K{N|Z+A|-N(2)}, 2
A(0,2)=0, 5(0,2)=1,
V=12 = [GA;} - %} t =i

Eqs (12a) are a Z-family of decoupled ODFEs,
Hamilton eqs A" = —0H /05, § = OH /OA of a
1-dim system: &, A, —3§ play the role of t, q, p,
H(A, 8,6 2) = (56 +UA; Z),
sSH14+v(f)  UA3z) 7B
V)= ———" —%
1, U act as kinetic,potential energy (mc? units
We can easily solve (12) in the unknown P =

(A, §) numerically, or by quadrature for £ >1.

Hydrodynamic regime up to WB

The HR holds as long as, for all Z,
5 0X.| 0%
0X| 07
The identity Z.|£+1€,(2),Z] = 2.(&,7) holds for
i €N, £>1; differentiating w.r.t. Z one finds |3]

J(E+i,2) = J(£,2)—iD(Z) N'(¢, Z); (15)

> 0. (14)
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Figure 4. Left: a) Optimal initial plasma density ny(Z) for the pulse of Fig. 2.a: n:ng = Ner /267, np=1.21 X n{)

2, =120, zy—2,=06.6A. b) Projections onto the z,ct plane of the corresponding WLs (in Minkowski space) of the Z

electrons for Z = 0, A, ...,156\. We have studied the down-ramp Z electrons more in detail, determining their WLs for
Z = 120\,120.1),...,140X: in c) we zoom the blue box of a). Here: & = ct+z; in the dark yellow region only ions are

present; we have painted pink, red the support of €'(ct—z) (considering €"(£) =0 outside 0 <& <40\) and the region where
the modulating intensity is above half maximum, i.e. —1'/2 < &—20\ < 1'/2, with I’ = 10.5\. Right: Three longitudinal

M —

phase-space plots z —u* (of injected e”s) obtained via a FB-PIC simulation (courtesy of P. Tomassini); u) = maximal u~.

5y =

Bottom: plot u) ~ ~" vs. z; is linear with growth rate F' ~ 0.27; agrees well with our prediction (19-20), where F' = (0.2806!

the period &,(Z) of the Z e~ is computed by

quadrature, CIDE%&—ZH. Via (15) we can extend our

knowledge of J from [I,14&,[ to all € > [ and
determine the first WB [3].

WFA of (self-)injected electrons

If a test e~ is injected with (22-, §Z) = (20, Si0),
—G0
Eo>1, s0>0, G (&) =0, its 2;, §; evolve after

o, 1-8 ~ ~r A
=

T

Along the plateau (16b) is &, = MA. Hence

A . 5. — 20— ay :
Si(f)—(SS—FS(f)a Zz(f)—Zzol (2 §g(y)

if 2j0> 2,= 240, (n0). Here s = § when ng(2) =
ng, and ds = s;p—s(&). If the trapping
condition s!" = s,+0s < 0 is fulfilled, then
3¢ > & such that §;(&r) = 0, 8'(&r) < 0, £(&f) =
o0; the e is trapped in a trough of the
PW and accelerated: for {§ ~ £; we have

5i(&) =18 (&p)| (§r—&) =M |A(&f)] (£ —8),

1 E—Es
Zi(§) ~ > \ (18)
2[MAE)] (§5—E)
Solving (18) for £y —¢& we express §;,4; vs. 2;:
1 S; Zj 2i—2 00
%_QSZ-IQ_FA > 00, (19)
F=MMNA(s)|. In this model the PW phase
velocity is ¢, trapped test e~ cannot dephase,
their energy grows o travelled distance.
(19) is reliable where pulse depletion is negligible,
0< 2z <z, Fixed z;, ng, it &, 20, so lead to 05 =
—1, then |A(&r)| = |A,|, and ~; is maximized:

Vilzisno) = \/J(v) zi/X (20)
here j(v) = 87T2VVL(V)—1}, and h(v) is the final
e~ energy transfered by the pulse if ny(z) =ng, vs.
V=ng/ne. Our 4-steps optimization procedure:
Step A: Computing &,(v), h(v), j(v) for
the given pulse. Done in few seconds using

Mathematica. In Fig. 3 we plot h(v),j(v) and
their maxima vy, v; for the pulse of Fig. 2.a.

Step B: Optimal choice for the plateau
density ny. If the plasma longitudinal thickness
available for WFA is z; < 2,,(v;), choose v = v;;:

Vi (21) = /3 ()) Zif A (21)

$(6)=K{N[2(&)]— N | Ze(&.2:(€))]}.(16)

—1|,(17)

Step C: Optimal linear down-ramp for
self-injection, LWFA. For all Z, all Z e~ co-
move. We stick to linear downramps

no(z) = np+ 71 (z2—2zs), 2 <z <z, (22)
T=2<0. Let (&, Zp) be the pair (£€,7) with

252
7 € [z, 25 and the smallest € such that J(£,7) =
0. For £ > &, a bunch of Z ~ Z, electron layers
start breaking the PW locally. P(& L) fulfills
(16). The Zp, layer earliest crosses other ones;
at each & > &, it overshoots a new layer that
up to & has evolved via (12a) and contributed to
the PW. It does for ever, helped by their mutual
repulsive forces; hence the 73, are the fastest elec-
trons injected and trapped in a trough of the PW
by the first WB. Fixed z;0 > z,, let § > &, be
the ‘instant’ when Z2.(&y,Zy.) = zi0. For & > &
(2,8) = (2e(Zr), 3(-,Zr) ) is given by (17) and
has s < 0. We determine parameters T, 2 re-
quiring that: P(&p) is in the upper part of the
cycle of Fig. 2., ie. at & = & the Z;, layer
crosses plateau ones having negative velocity A':
ds as close as possible to -1, so that (20) applies.

Step D: choose an up-ramp growing from 0
to ng in a short interval 0 <z < z;, and preventing

WB at £ <&, that ng(z) ~ O(z?) helps [3.4].

Applying our optimization procedure to the pulse
of Fig. 2.a we obtain density and results of Fig. 4.
If A=0.8um, F' = 0.28 leads to the remarkable

energy gain 0.35mc? ~ 0.1785MeV per pm.

If the pulse is cylindrically symmetric around 2
with waist R, by causality our results hold strictly
in the causal cone (of axis 2, radius R) trailing the
pulse, approximately in a neighbourhood thereof.
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