On maximizing laser wake field acceleration (LWFA) by tailoring the plasma density. EAAC23, ID357

Gaetano Fiore, Dip. Matematica ed Applicazioni, Universitá "Federico II", and INFN, Napoli. E-mail: gaetano.fiore@na.infn.it
Abstract: We sketch a preliminary analytical procedure [1,2] in 4 steps to tailor the initial density (upramp+downramp+plateau) of a cold diluted plasma to the laser pulse so as to control wave breakings (WBs) of the plasma wave (PW) and maximize the acceleration of the first electrons (e^{-}s) self-injected in the PW by the first WB at the down-ramp; the corresponding plateau density is uniquely determined. We use as long as possible the improved fully relativistic plane hydrodynamic model (HM) of Ref. $[3,4,5]$, modeling the pulse as a plane wave travelling in the z direction. Our ($1+1$)-dim results may help also in realistic ($3+1$)-dim problems.

I. Introduction and set-up

Nowadays the equations (Maxwell + kinetic theory for electrons and ions) ruling plasma dynamics in LWFA can be solved via more and more powerful particle-in-cell (PIC) codes, but running them has huge costs for each choice of the input data. Hence it is crucial to do after a preliminary data selection based on simpler models. Below we sketch one maximizing the above LWFA. We regard the plasma as long as possible as a static background of ions and fully relativistic collisionless fluid of e^{-}s. Initial conditions for their Eulerian density n_{e}, velocity \mathbf{v}_{e}
$\mathbf{v}_{e}(0, \mathbf{x})=\mathbf{0}, \quad n_{e}(0, \mathbf{x})=\widetilde{n_{0}}(z) ;$
the initial e^{-}(and proton) density $\widetilde{n_{0}}(z)$ satisfies
$\widetilde{n_{0}}(z) \leq n_{b}, \quad \widetilde{n_{0}}(z)= \begin{cases}0 & \text { if } z \leq 0, \\ n_{0} & \text { if } z \geq z_{s}\end{cases}$
for some $n_{b} \geq n_{0}>0$ and $z_{s}>0$ (see Fig.).

We model the electric and magnetic fields \mathbf{E}, \mathbf{B} as a plane wave propagating in the z-direction,

$$
\mathbf{E}(t, \mathbf{x})=\boldsymbol{\epsilon}^{\dagger}(c t-z), \quad \mathbf{B}=\mathbf{k} \times \mathbf{E}
$$ $(\mathbf{x}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}, c$ is the speed of light), where the support of $\boldsymbol{\epsilon}^{\wedge}(\xi) \perp \mathbf{k}$ is an interval $0 \leq \xi \leq l$

 $\left\{\widetilde{n_{0}}(z), \boldsymbol{\epsilon}^{\perp}(\xi)\right\} \equiv$ input data of our problem. The position $\mathbf{x}(t)$ and momentum $\mathbf{p}(t)=$ $m c \mathbf{u}(t)$ of an e^{-}fulfill the Lorentz eqs. Dimensionless variables: $\beta \equiv \mathbf{v} / c=\dot{\mathbf{x}} / c, \quad \gamma \equiv$ $1 / \sqrt{1-\boldsymbol{\beta}^{2}}=\sqrt{1+\mathbf{u}^{2}}$, the 4 -velocity $u=\left(u^{0}, \mathbf{u}\right) \equiv$ $(\gamma, \gamma \boldsymbol{\beta})$. As $\mathrm{v}<c$, we can make the change $t \mapsto \xi=c t-z$ of independent parameter along the worldline (WL) of e^{-}(see Fig. 1), so that the term $\boldsymbol{\epsilon}^{\perp}[c t-z(t)]$, where the unknown $z(t)$ is in the argument of the highly nonlinear and rapidly varying $\boldsymbol{\epsilon}^{\perp}$, becomes the known forcing term $\boldsymbol{\epsilon}^{\perp}(\xi)$. We denote as $\hat{\mathbf{x}}(\xi)$ the position of e^{-}as a function of ξ; it is determined by $\hat{\mathbf{x}}(\xi)=$ $\mathbf{x}(t)$. More generally given any $f(t, \mathbf{x})$ we denote $\hat{f}(\xi, \hat{\mathbf{x}}) \equiv f[\hat{t}(\xi), \hat{\mathbf{x}}]($ where $c \hat{t}(\xi)=\xi+\hat{z}(\xi))$, abbreviate $\dot{f} \equiv d f / d t, \hat{f}^{\prime} \equiv d \hat{f} / d \xi$ (total derivatives). Convenient change of dependent variable $u^{z} \mapsto s \equiv$ the lightlike component of $u[5]$:
$s \equiv \gamma-u^{z}=u^{-}=\gamma\left(1-\beta^{z}\right)=\frac{\gamma d \tilde{\xi}}{c} \frac{d t}{d t} 0 ; \quad$ (4) $\gamma, \mathbf{u}, \boldsymbol{\beta}$ are the rational function of \mathbf{u}, s $\gamma=\frac{1+\mathbf{u}^{\perp 2}+s^{2}}{2 s}, \quad u^{z}=\frac{1+\mathbf{u}^{\perp 2}-s^{2}}{2 s}, \quad \boldsymbol{\beta}=\frac{\mathbf{u}}{\gamma}$;
(5) hold also with $\hat{\text {. If }} \hat{s}(\xi) \rightarrow 0$ as $\xi \uparrow \xi_{f}<\infty$ then $\hat{\gamma}, \hat{u}^{z}, \hat{t} \rightarrow \infty$. Replacing $\gamma d / d t \mapsto c s d / d \xi$ and putting ${ }^{\wedge}$ on all variables makes Lorentz eqs rational in the unknowns $\hat{\mathbf{u}}^{+}, \hat{s}$. Moreover, \hat{s} is practically insensitive to fast oscillations of $\boldsymbol{\epsilon}^{\perp}(\xi)$ (see Fig. 2.b). Let $\mathbf{x}_{e}(t, \mathbf{X}) \equiv$ position at time t of the e^{-}fluid element $d^{3} X$ initially located at $\mathbf{X} \equiv(X, Y, Z), \hat{\mathbf{x}}_{e}(\xi, \mathbf{X}) \equiv$ the same position as a function of ξ. We dub as ' Z electrons' the e^{-}s in the layer $[Z, Z+d Z]$ for $t \leq 0$. In the hydrodynamic regime (HR) the maps $\mathbf{x}_{e}(t, \cdot): \mathbf{X} \mapsto \mathbf{x}$ $\hat{\mathbf{x}}_{e}(\xi, \cdot): \mathbf{X} \mapsto \mathbf{x}$ are one-to-one for all t, resp. ξ The inverses $\mathbf{X}_{e}(t, \cdot), \hat{\mathbf{X}}_{e}(\xi, \cdot)$ fulfill

$$
\begin{equation*}
\mathbf{X}_{e}(t, \mathbf{x})=\hat{\mathbf{X}}_{e}(c t-z, \mathbf{x}) . \tag{6}
\end{equation*}
$$

Figure 1:Two particle worldlines (WLs) λ_{1}, λ_{2} in Minkowski space; they intersect the support (pink) of a plane electromagnetic (EM) wave of total length l in the positive z di rection. Since each WL intersects once every hyperplane $\xi=$ const (beside every hyperplane $t=$ const), we can use ξ rather than t as a parameter along it. The front, end of the EM wave intersect different WLs at different t-instants

Figure 2:(a) Normalized gaussian pulse of FWHM $l^{\prime}=10.5 \lambda$, linear polarization, peak amplitude $a_{0} \equiv \lambda e E_{M}^{\perp} / 2 \pi m c^{2}=2$. (b) Corresponding solution of (12) if $\widetilde{n_{0}}(z)=n_{0}^{j} \equiv n_{c r} / 267$ $n_{\text {cr }}=\pi m c^{2} / e^{2} \lambda^{2}$ is the critical density); as a result, $E / m c^{2} \equiv h=1.28$. Adopting $n_{0}=n_{0}^{j}$ as the plateau density maximizes the maximal $\left|E^{z}\right|$ in the PW, hence also the LWFA of test electrons with the 'right' phase. If $\lambda=0.8 \mu \mathrm{~m}$, then peak intensity is $I=1.7 \times 10^{19} \mathrm{~W} / \mathrm{cm}^{2}$ and $n_{0}^{j}=6.5 \times 10^{18} \mathrm{~cm}^{-3}$. (c) The corresponding electron phase portrait (at $\xi>l$).

Figure 3 : $\bar{h}-1$ (energy gain per e^{-}), j vs. the density n_{0}.
$\Delta \mathbf{x}_{e} \equiv \mathbf{x}_{e}(t, \mathbf{X})-\mathbf{X}$ actually depends only on t, Z and $\Delta \hat{\mathbf{x}}_{e} \equiv \hat{\mathbf{x}}_{e}(\xi, \mathbf{X})-\mathbf{X}$ only on $\left.\xi, Z\right]$ and by causality vanishes if $c t \leq Z$. We adopt the x, y-independent physical observable
$\mathbf{A}^{\perp}(t, z) \equiv-c \int_{-\infty}^{t} d t^{\prime} \mathbf{E}^{\perp}\left(t^{\prime}, z\right) ;$
as the transverse component of the EM potential: $c \mathbf{E}^{\perp}=-\partial_{t} \mathbf{A}^{\perp}, \mathbf{B}=\mathbf{k} \wedge \partial_{z} \mathbf{A}^{\perp}$. As usual, (Lorentz eq. $)^{\perp}$ and $\mathbf{p}_{e}^{\perp}(0, \mathbf{x})=\mathbf{0}=\boldsymbol{\alpha}^{\perp}(-z)$ if $z \geq 0$ imply
$\mathbf{p}_{e}^{\perp}=\frac{e}{c} \mathbf{A}^{\perp} \quad$ i.e. $\quad \mathbf{u}_{e}^{\perp}=\frac{e}{m c^{2}} \mathbf{A}^{\perp}, \quad$ (8)
for the Eulerian e^{-}momentum \mathbf{p}_{e}, allowing to trade \mathbf{u}_{e}^{\perp} for \mathbf{A}^{\perp} as an unknown. By (3), for $t \leq 0$
$\mathbf{A}^{\perp}(t, z)=\boldsymbol{\alpha}^{\perp}(c t-z), \quad \boldsymbol{\alpha}^{\perp}(\xi) \equiv \int_{-\infty}^{\xi}-d \eta \boldsymbol{\epsilon}^{\perp}(\eta) ;(9)$ (9) approximately holds also for small $t>0$. The conservation $n_{e} d z=\widetilde{n_{0}} d Z$ of number of e^{-}gives:
$n_{e}(t, z)=\widetilde{n_{0}}\left[Z_{e}(t, z)\right] \partial_{z} Z_{e}(t, z) . \quad$ (10) Maxwell eqs $\nabla \cdot \mathbf{E}-4 \pi j^{0}=\partial_{z} E^{z}-4 \pi e\left(n_{p}-n_{e}\right)=0$, $\partial_{t} E^{z} / c+4 \pi j^{z}=(\nabla \wedge \mathbf{B})^{z}=0$ \& in. cond. imply [5]
$E^{z}(t, z)=4 \pi e\left\{\widetilde{N}(z)-\widetilde{N}\left[Z_{e}(t, z)\right]\right\}, \quad$ (11) $\mathbf{j}=-e n_{e} \boldsymbol{\beta}_{e}, \widetilde{N}(z) \equiv \int_{0}^{z} d \eta \widetilde{n_{0}}(\eta) . \operatorname{Via}(10-11)$ we express n_{e}, E^{z} through $\widetilde{n_{0}}$ and the still unknown $Z_{e}(t, z)$. (5c) amounts to $\hat{\mathbf{x}}_{e}^{\perp+}=\hat{\mathbf{u}}_{e}^{\perp} / \hat{s}$, which integrated yields $\hat{\mathbf{x}}_{e}^{\perp}$ in terms of $\hat{s} \equiv \hat{s}_{e}$. The remaining unknowns $\hat{\Delta}(\xi, Z) \equiv \hat{z}_{e}(\xi, Z)-Z$, \hat{s} satisfy
$\hat{\Delta}^{\prime}=\frac{1+v}{2 \hat{s}^{2}}-\frac{1}{2}, \quad \hat{s}^{\prime}=K\{\widetilde{N}[Z+\hat{\Delta}]-\widetilde{N}(Z)\}$, $\hat{\Delta}(0, Z)=0, \quad \hat{s}(0, Z)=1$,

Eqs (12a) are a Z-family of decoupled $O D E s$, Hamilton eqs $\hat{\Delta}^{\prime}=-\partial \hat{H} / \partial \hat{s}, \hat{s}^{\prime}=\partial \hat{H} / \partial \hat{\Delta}$ of a 1-dim system: $\xi, \hat{\Delta},-\hat{s}$ play the role of t, q, p,
$\hat{H}(\hat{\Delta}, \hat{s}, \xi ; Z) \equiv \gamma(\hat{s} ; \xi)+\mathcal{U}(\hat{\Delta} ; Z)$, $\gamma(s ; \xi) \equiv \frac{s^{2}+1+v(\xi)}{2 s}, \quad \frac{\mathcal{U}(\Delta ; z)}{K} \equiv \int_{z}^{z+\Delta} \bar{\zeta} \widetilde{N}(\zeta)-\widetilde{N}(z) \Delta ;$
$\gamma-1, \mathcal{U}$ act as kinetic,potential energy ($m c^{2}$ units). We can easily solve (12) in the unknown $\hat{P} \equiv$ ($\hat{\Delta}, \hat{s}$) numerically, or by quadrature for $\xi \geq l$.

Hydrodynamic regime up to WB
The HR holds as long as, for all Z,

$$
\begin{equation*}
\hat{J} \equiv\left|\frac{\partial \hat{\mathbf{x}}_{e}}{\partial \mathbf{X}}\right|=\frac{\partial \hat{z}_{e}}{\partial Z}>0 . \tag{14}
\end{equation*}
$$

The identity $\hat{z}_{e}\left[\xi+i \xi_{H}(Z), Z\right]=\hat{z}_{e}(\xi, Z)$ holds for $i \in \mathbb{N}, \xi>l$; differentiating w.r.t. Z one finds [3] $\hat{J}\left(\xi+i \xi_{H}, Z\right)=\hat{J}(\xi, Z)-i \Phi(Z) \Delta^{\prime}(\xi, Z) ;(15)$

Figure 4: Left: a) Optimal initial plasma density $\widetilde{n_{0}}(Z)$ for the pulse of Fig. 2.a: $n=n_{0}^{j}=n_{c r} / 267, n_{b}=1.21 \times n_{0}^{j}$ $z_{b}=120 \lambda, \quad z_{s}-z_{b}=6.6 \lambda$. b) Projections onto the $z, c t$ plane of the corresponding WLs (in Minkowski space) of the Z electrons for $Z=0, \lambda, \ldots, 156 \lambda$. We have studied the down-ramp Z electrons more in detail, determining their WLs for $Z=120 \lambda, 120.1 \lambda, \ldots, 140 \lambda$: in c) we zoom the blue box of a). Here: $\xi^{\prime} \equiv c t+z$; in the dark yellow region only ions are present; we have painted pink, red the support of $\epsilon^{\perp}(c t-z)$ (considering $\epsilon^{\perp}(\xi)=0$ outside $0<\xi<40 \lambda$) and the region where the modulating intensity is above half maximum, i.e. $-l^{\prime} / 2<\xi-20 \lambda<l^{\prime} / 2$, with $l^{\prime}=10.5 \lambda$. Right: Three longitudinal phase-space plots $z-u^{z}$ (of injected e^{-}s) obtained via a FB-PIC simulation (courtesy of P. Tomassini); $u_{z}^{M} \equiv$ maximal u^{z}. Bottom: plot $u_{z}^{M} \simeq \gamma_{i}^{M}$ vs. z_{i} is linear with growth rate $F \simeq 0.27$; agrees well with our prediction (19-20), where $F=0.286$!
the period $\xi_{H}(Z)$ of the $Z e^{-}$is computed by quadrature, $\Phi \equiv \frac{\partial \epsilon_{H}}{\partial Z}$. Via (15) we can extend our knowledge of \hat{J} from $\left[l, l+\xi_{H}[\right.$ to all $\xi \geq l$ and determine the first WB [3].

WFA of (self-)injected electrons
If a test e^{-}is injected with $\left(\hat{z}_{i}, \hat{s}_{i}\right)_{\xi=\xi_{0}}=\left(z_{i 0}, s_{i 0}\right)$, $\xi_{0}>l, s_{i 0}>0, \hat{\mathbf{u}}_{i}^{\perp}\left(\xi_{0}\right)=0$, its \hat{z}_{i}, \hat{s}_{i} evolve after $\hat{z}_{i}^{\prime}=\frac{1-\hat{s}_{i}^{2}}{2 \hat{s}_{i}^{2}} \quad \quad \hat{s}_{i}^{\prime}(\xi)=K\left\{\widetilde{N}\left[\hat{z}_{i}(\xi)\right]-\widetilde{N}\left[\hat{Z}_{e}\left(\xi, \hat{z}_{i}(\xi)\right)\right]\right\} .(1$ Along the plateau (16b) is $\hat{s}_{i}^{\prime}=M \Delta$. Hence $\hat{s}_{i}(\xi)=\delta s+s(\xi), \quad \hat{z}_{i}(\xi)=z_{i 0}+\int_{\xi_{0}} \frac{\xi_{2} y}{}\left[\frac{1}{\hat{s}_{i}^{2}(y)}-1\right],(17)$ if $z_{i 0} \geq z_{q} \equiv z_{s}+\Delta_{M}\left(n_{0}\right)$. Here $s=\hat{s}$ when $\widetilde{n_{0}}(z)=$ n_{0}, and $\delta s \equiv s_{i 0}-s\left(\xi_{0}\right)$. If the trapping condition $s_{i}^{m} \equiv s_{m}+\delta s<0$ is fulfilled, then $\exists \xi_{f}>\xi_{0}$ such that $\hat{s}_{i}\left(\xi_{f}\right)=0, s^{\prime}\left(\xi_{f}\right)<0, \hat{t}\left(\xi_{f}\right)=$ ∞; the e^{-}is trapped in a trough of the PW and accelerated: for $\xi \simeq \xi_{f}$ we have $\hat{s}_{i}(\xi) \simeq\left|s^{\prime}\left(\xi_{f}\right)\right|\left(\xi_{f}-\xi\right)=M\left|\Delta\left(\xi_{f}\right)\right|\left(\xi_{f}-\xi\right)$,

$\hat{z}_{i}(\xi) \simeq \frac{1}{2\left[M \Delta\left(\xi_{f}\right)\right]^{2}\left(\xi_{f}-\xi\right)} \longrightarrow \infty$.

Solving (18) for $\xi_{f}-\xi$ we express $\hat{s}_{i}, \hat{\gamma}_{i}$ vs. z_{i}

$$
\begin{equation*}
\gamma_{i}=\frac{1}{2 s_{i}}+\frac{s_{i}}{2} \simeq F \frac{z_{i}}{\lambda} \xrightarrow{z_{i} \rightarrow \infty} \infty \tag{19}
\end{equation*}
$$

$F \equiv M \lambda\left|\Delta\left(\xi_{f}\right)\right|$. In this model the PW phase velocity is c, trapped test e^{-}cannot dephase, their energy grows \propto travelled distance (19) is reliable where pulse depletion is negligible, $13^{0} \leq z_{i} \leq z_{p d .}$. Fixed z_{i}, n_{0}, if ξ_{0}, z_{0}, s_{0} lead to $\delta s=$ -1 , then $\left|\Delta\left(\xi_{f}\right)\right|=\left|\Delta_{m}\right|$, and γ_{i} is maximized

$$
\begin{equation*}
\gamma_{i}\left(z_{i}, n_{0}\right) \simeq \sqrt{j(\nu)} z_{i} / \lambda \tag{20}
\end{equation*}
$$

here $j(\nu) \equiv 8 \pi^{2} \nu[\bar{h}(\nu)-1]$, and $\bar{h}(\nu)$ is the final e^{-}energy transfered by the pulse if $\widetilde{n_{0}}(z)=n_{0}$, vs. $\nu \equiv n_{0} / n_{c r}$. Our 4-steps optimization procedure:
Step A: Computing $\bar{\xi}_{H}(\nu), \bar{h}(\nu), j(\nu)$ for the given pulse. Done in few seconds using Mathematica. In Fig. 3 we plot $\bar{h}(\nu), j(\nu)$ and their maxima ν_{h}, ν_{j} for the pulse of Fig. 2.a
Step B: Optimal choice for the plateau density n_{0}. If the plasma longitudinal thickness available for WFA is $z_{i} \leq z_{p i}\left(\nu_{j}\right)$, choose $\nu=\nu_{j}$

Step C: Optimal linear down-ramp for self-injection, LWFA. For all Z, all $Z e^{-}$comove. We stick to linear downramps
$\widetilde{n_{0}}(z)=n_{0}+\Upsilon\left(z-z_{s}\right), \quad z_{b} \leq z \leq z_{s}, \quad(22)$ $\Upsilon=\frac{n_{\odot}-n_{b}}{z_{\sigma}-z_{b}}<0$. Let $\left(\xi_{b r}, Z_{b r}\right)$ be the pair (ξ, Z) with $Z \in\left[z_{b}, z_{s}\right]$ and the smallest ξ such that $\hat{J}(\xi, Z)=$ 0 . For $\xi>\xi_{b r}$ a bunch of $Z \sim Z_{b r}$ electron layers start breaking the PW locally. $\hat{P}\left(\xi, Z_{b r}\right)$ fulfills (16). The $Z_{b r}$ layer earliest crosses other ones; at each $\xi>\xi_{b r}$ it overshoots a new layer that up to ξ has evolved via (12a) and contributed to the PW. It does for ever, helped by their mutual repulsive forces; hence the $Z_{b r}$ are the fastest electrons injected and trapped in a trough of the PW by the first WB. Fixed $z_{i 0} \geq z_{q}$, let $\xi_{0}>\xi_{b r}$ be the 'instant' when $\hat{z}_{e}\left(\xi_{0}, Z_{b r}\right)=z_{i 0}$. For $\xi \geq \xi_{0}$ $\left(\hat{z}_{i}, \hat{s}_{i}\right) \equiv\left(\hat{z}_{e}\left(\cdot, Z_{b r}\right), \hat{s}\left(\cdot, Z_{b r}\right)\right)$ is given by (17) and has $s_{i}^{m}<0$. We determine parameters Υ, z_{b} requiring that: $P\left(\xi_{0}\right)$ is in the upper part of the cycle of Fig. 2.c, i.e. at $\xi=\xi_{0}$ the $Z_{b r}$ layer crosses plateau ones having negative velocity Δ^{\prime}; δs as close as possible to -1 , so that (20) applies Step D: choose an up-ramp growing from 0 to n_{b} in a short interval $0 \leq z \leq z_{b}$ and preventing WB at $\xi<\xi_{b r} ;$ that $\widetilde{n_{0}}(z) \simeq \bar{O}\left(z^{2}\right)$ helps $[3,4]$.
Applying our optimization procedure to the pulse of Fig. 2.a we obtain density and results of Fig. 4. If $\lambda=0.8 \mu \mathrm{~m}, F=0.28$ leads to the remarkable energy gain $0.35 \mathrm{mc}^{2} \simeq 0.1785 \mathrm{MeV}$ per $\mu \mathrm{m}$.
If the pulse is cylindrically symmetric around \vec{z} with waist R, by causality our results hold strictly in the causal cone (of axis \vec{z}, radius R) trailing the pulse, approximately in a neighbourhood thereof. Acknowledgements. We thank P. Tomassini for the FB-PIC simulations leading to Fig.s (4) right.

References

[1] G. Fiore, arXiv:2305.04580, to appear in the IEEE Proceedings of the Workshop AAC'22 [2] G. Fiore, On maximizing LWFA by tailoring the plasma density, in preparation
[3] G. Fiore, S. De Nicola, T. Akhter, R. Fedele, D. Jovanovic, Physica D 454 (2023), 133878. [4] G. Fiore, M. De Angelis, R. Fedele, G. Guer riero, D. Jovanovic, Mathematics 10, 2622 (2022). [5] G. Fiore, J. Phys. A: Math. Theor. 51, 085203 [5] G. Fiore, J. Phys. A: Math. Theor. 51, 085203

