On maximizing laser wake field acceleration (LWFA) by tailoring the plasma density. EAAC23, ID357

Gaetano Fiore, Dip. Matematica ed Applicazioni, Universitá "Federico II", and INFN, Napoli. E-mail: gaetano.fiore@na.infn.it

Abstract: We sketch a preliminary analytical procedure [1,2] in 4 steps to tailor the initial density (upramp+downramp+plateau) of a cold diluted plasma to the laser pulse so as to control wave breakings (WBs) of the plasma wave (PW) and maximize the acceleration of the first electrons (e^-s) self-injected in the PW by the first WB at the down-ramp; the corresponding plateau density is uniquely determined. We use as long as possible the improved fully relativistic plane hydrodynamic model (HM) of Ref. [3,4,5], modeling the pulse as a plane wave travelling in the z direction. Our (1+1)-dim results may help also in realistic (3+1)-dim problems.

I. Introduction and set-up

Nowadays the equations (Maxwell + kinetic theory for electrons and ions) ruling plasma dynamics in LWFA can be solved via more and more powerful particle-in-cell (PIC) codes, but running them has huge costs for each choice of the input data. Hence it is crucial to do after a preliminary data selection based on simpler models. Below we sketch one maximizing the above LWFA. We regard the plasma as long as possible as a static background of ions and fully relativistic collisionless fluid of e^{-s} . Initial conditions for their Eulerian density n_e , velocity \mathbf{v}_e :

 $\mathbf{v}_e(0,\mathbf{x}) = \mathbf{0},$ $n_e(0,\mathbf{x}) = \widetilde{n_0}(z);$ (1)the initial e^- (and proton) density $\widetilde{n_0}(z)$ satisfies $\widetilde{n_0}(z) \le n_b, \qquad \widetilde{n_0}(z) = \begin{cases} 0 & \text{if } z \le 0, \\ n_0 & \text{if } z \ge z_s \end{cases}$ (2)

for some $n_b \ge n_0 > 0$ and $z_s > 0$ (see Fig.).

We model the electric and magnetic fields \mathbf{E}, \mathbf{B} as a plane wave propagating in the z-direction,

 $\mathbf{E}(t, \mathbf{x}) = \boldsymbol{\epsilon}^{\perp}(ct - z), \quad \mathbf{B} = \mathbf{k} \times \mathbf{E}$ (3) $(\mathbf{x} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}, c \text{ is the speed of light})$, where the support of $\boldsymbol{\epsilon}^{\perp}(\boldsymbol{\xi}) \perp \mathbf{k}$ is an interval $0 \leq \boldsymbol{\xi} \leq l$ fulfilling $l \leq \sqrt{\pi mc^2/n_b e^2}$ (neglect depletion). ${\widetilde{n_0}(z), \epsilon^{\perp}(\xi)} \equiv \text{input data of our problem.}$ The position $\mathbf{x}(t)$ and momentum $\mathbf{p}(t) =$ $mc \mathbf{u}(t)$ of an e^- fulfill the Lorentz eqs. Dimensionless variables: $\boldsymbol{\beta} \equiv \mathbf{v}/c = \dot{\mathbf{x}}/c, \quad \boldsymbol{\gamma} \equiv \mathbf{v}/c$

linear polarization, peak amplitude $a_0 \equiv \lambda e E_M^{\perp}/2\pi mc^2 = 2$. (b) Corresponding solution of (12) if $\widetilde{n_0}(z) = n_0^j \equiv n_{cr}/267$ $(n_{cr} = \pi m c^2 / e^2 \lambda^2$ is the critical density); as a result, $E/mc^2 \equiv h = 1.28$. Adopting $n_0 = n_0^j$ as the plateau density maximizes the maximal $|E^z|$ in the PW, hence also the LWFA of test electrons with the 'right' phase. If $\lambda = 0.8 \mu$ m, then peak intensity is $I = 1.7 \times 10^{19} \text{W/cm}^2$ and $n_0^j = 6.5 \times 10^{18} \text{cm}^{-3}$. (c) The corresponding electron phase portrait (at $\xi > l$).

Figure 3: \overline{h} -1 (energy gain per e^-), j vs. the density n_0 .

 $\Delta \mathbf{x}_e \equiv \mathbf{x}_e(t, \mathbf{X}) - \mathbf{X}$ actually depends only on $t, Z \text{ [and } \Delta \hat{\mathbf{x}}_e \equiv \hat{\mathbf{x}}_e(\xi, \mathbf{X}) - \mathbf{X} \text{ only on } \xi, Z \text{] and }$ by causality vanishes if $ct \leq Z$. We adopt the x, y-independent physical observable

Figure 4: Left: a) Optimal initial plasma density $\widetilde{n_0}(Z)$ for the pulse of Fig. 2.a: $n = n_0^j = n_{cr}/267$, $n_b = 1.21 \times n_0^j$, $z_b = 120\lambda$, $z_s - z_b = 6.6\lambda$. b) Projections onto the z, ct plane of the corresponding WLs (in Minkowski space) of the Z electrons for $Z = 0, \lambda, ..., 156\lambda$. We have studied the down-ramp Z electrons more in detail, determining their WLs for $Z = 120\lambda, 120.1\lambda, ..., 140\lambda$: in c) we zoom the blue box of a). Here: $\xi' \equiv ct + z$; in the dark yellow region only ions are present; we have painted pink, red the support of $\epsilon^{\perp}(ct-z)$ (considering $\epsilon^{\perp}(\xi)=0$ outside $0 < \xi < 40\lambda$) and the region where the modulating intensity is above half maximum, i.e. $-l'/2 < \xi - 20\lambda < l'/2$, with $l' = 10.5\lambda$. **Right:** Three longitudinal phase-space plots $z - u^z$ (of injected e^-s) obtained via a FB-PIC simulation (courtesy of P. Tomassini); $u_z^M \equiv$ maximal u^z .

 $1/\sqrt{1-\beta^2} = \sqrt{1+\mathbf{u}^2}$, the 4-velocity $u = (u^0, \mathbf{u}) \equiv$ $(\gamma, \gamma \beta)$. As v < c, we can make the change $t \mapsto \xi = ct - z$ of independent parameter along the worldline (WL) of e^- (see Fig. 1), so that the term $\boldsymbol{\epsilon}^{\perp}[ct-z(t)]$, where the unknown z(t)is in the argument of the highly nonlinear and rapidly varying $\boldsymbol{\epsilon}^{\perp}$, becomes the known forcing term $\boldsymbol{\epsilon}^{\perp}(\boldsymbol{\xi})$. We denote as $\hat{\mathbf{x}}(\boldsymbol{\xi})$ the position of e^- as a function of ξ ; it is determined by $\hat{\mathbf{x}}(\xi) = \mathbf{x}(\xi)$ $\mathbf{x}(t)$. More generally given any $f(t, \mathbf{x})$ we denote $\hat{f}(\xi, \hat{\mathbf{x}}) \equiv f \left| \hat{t}(\xi), \hat{\mathbf{x}} \right|$ (where $c \, \hat{t}(\xi) = \xi + \hat{z}(\xi)$), abbreviate $f \equiv df/dt$, $\hat{f}' \equiv d\hat{f}/d\xi$ (total derivatives). Convenient change of dependent variable $u^z \mapsto s \equiv$ the lightlike component of u [5]:

 $s \equiv \gamma - u^z = u^- = \gamma (1 - \beta^z) = \frac{\gamma d\xi}{c dt} > 0; \quad (4)$

 $\gamma, \mathbf{u}, \boldsymbol{\beta}$ are the *rational* function of \mathbf{u}, s

 $\gamma = \frac{1 + \mathbf{u}^{\perp 2} + s^2}{2s}, \quad u^z = \frac{1 + \mathbf{u}^{\perp 2} - s^2}{2s}, \quad \boldsymbol{\beta} = \frac{\mathbf{u}}{\gamma}; \quad (5)$

(5) hold also with $\hat{}$. If $\hat{s}(\xi) \to 0$ as $\xi \uparrow \xi_f < \infty$, then $\hat{\gamma}, \hat{u}^z, \hat{t} \to \infty$. Replacing $\gamma d/dt \mapsto cs d/d\xi$ and putting on all variables makes Lorentz eqs rational in the unknowns $\hat{\mathbf{u}}^{\perp}, \hat{s}$. Moreover, \hat{s} is practically insensitive to fast oscillations of $\boldsymbol{\epsilon}^{\perp}(\boldsymbol{\xi})$ (see Fig. 2.b). Let $\mathbf{x}_e(t, \mathbf{X}) \equiv \text{position at time}$

 $\mathbf{A}^{\scriptscriptstyle\!\perp}(t,z) \equiv -c \! \int_{-\infty}^{t} \! dt' \, \mathbf{E}^{\scriptscriptstyle\!\perp}\!(t',z);$ (7)

as the transverse component of the EM potential: $c\mathbf{E}^{\perp} = -\partial_t \mathbf{A}^{\perp}, \ \mathbf{B} = \mathbf{k} \wedge \partial_z \mathbf{A}^{\perp}.$ As usual, (Lorentz eq.)^{\perp} and $\mathbf{p}_{e}^{\perp}(0,\mathbf{x}) = \mathbf{0} = \boldsymbol{\alpha}^{\perp}(-z)$ if $z \ge 0$ imply

 $\mathbf{p}_{e}^{\perp} = \frac{e}{c} \mathbf{A}^{\perp}$ i.e. $\mathbf{u}_{e}^{\perp} = \frac{e}{mc^{2}} \mathbf{A}^{\perp}$, (8) for the Eulerian e^- momentum \mathbf{p}_e , allowing to trade \mathbf{u}_{e}^{\perp} for \mathbf{A}^{\perp} as an unknown. By (3), for $t \leq 0$

 $\mathbf{A}^{\scriptscriptstyle \perp}(t,z) = \boldsymbol{\alpha}^{\scriptscriptstyle \perp}(ct-z), \quad \boldsymbol{\alpha}^{\scriptscriptstyle \perp}(\xi) \equiv \int_{-\infty}^{\varsigma} d\eta \ \boldsymbol{\epsilon}^{\scriptscriptstyle \perp}(\eta); (9)$

(9) approximately holds also for small t > 0. The conservation $n_e dz = \widetilde{n_0} dZ$ of number of e^- gives: $n_e(t,z) = \widetilde{n_0}[Z_e(t,z)] \ \partial_z Z_e(t,z).$ (10)Maxwell eqs $\nabla \cdot \mathbf{E} - 4\pi j^0 = \partial_z E^z - 4\pi e(n_p - n_e) = 0$, $\partial_t E^z/c + 4\pi j^z = (\nabla \wedge \mathbf{B})^z = 0$ & in. cond. imply [5]

 $E^{z}(t,z) = 4\pi e \left\{ \widetilde{N}(z) - \widetilde{N}[Z_{e}(t,z)] \right\}, \qquad (11)$ $\mathbf{j} = -en_e \boldsymbol{\beta}_e$, $\widetilde{N}(z) \equiv \int_0^z d\eta \, \widetilde{n_0}(\eta)$. Via (10-11) we

express n_e, E^z through $\widetilde{n_0}$ and the still unknown $Z_e(t,z)$. (5c) amounts to $\hat{\mathbf{x}}_e^{\perp\prime} = \hat{\mathbf{u}}_e^{\perp}/\hat{s}$, which integrated yields $\hat{\mathbf{x}}_{e}^{\perp}$ in terms of $\hat{s} \equiv \hat{s}_{e}$. The remaining unknowns $\hat{\Delta}(\xi,Z) \equiv \hat{z}_{c}(\xi,Z) - Z_{c}\hat{s}$ satisfy

Bottom: plot $u_z^M \simeq \gamma_i^M$ vs. z_i is linear with growth rate $F \simeq 0.27$; agrees well with our prediction (19-20), where F = 0.286!

the period $\xi_{H}(Z)$ of the Z e^{-} is computed by quadrature, $\Phi \equiv \frac{\partial \xi_H}{\partial Z}$. Via (15) we can extend our knowledge of \hat{J} from $[l, l+\xi_H]$ to all $\xi \geq l$ and determine the first WB [3].

WFA of (self-)injected electrons

If a test e^- is injected with $(\hat{z}_i, \hat{s}_i)_{\xi=\xi_0} = (z_{i0}, s_{i0}),$ $\xi_0 > l, \ s_{i0} > 0, \ \hat{\mathbf{u}}_i^{\scriptscriptstyle \perp}(\xi_0) = 0, \ \text{its} \ \hat{z}_i, \ \hat{s}_i \ \text{evolve after}$ Along the plateau (16b) is $\hat{s}'_i = M\Delta$. Hence $\hat{s}_{i}(\xi) = \delta s + s(\xi), \quad \hat{z}_{i}(\xi) = z_{i0} + \int_{\xi_{0}} \frac{\delta y}{2} \left[\frac{1}{\hat{s}_{i}^{2}(y)} - 1 \right], (17)$ if $z_{i0} \ge z_q \equiv z_s + \Delta_M(n_0)$. Here $s = \hat{s}$ when $\widetilde{n_0}(z) = 1$ n_0 , and $\delta s \equiv s_{i0} - s(\xi_0)$. If the **trapping condition** $s_i^m \equiv s_m + \delta s < 0$ is fulfilled, then $\exists \xi_f > \xi_0 \text{ such that } \hat{s}_i(\xi_f) = 0, \ s'(\xi_f) < 0, \ \hat{t}(\xi_f) = 0$ ∞ ; the e^- is trapped in a trough of the **PW and accelerated**: for $\xi \simeq \xi_f$ we have $\hat{s}_i(\xi) \simeq |s'(\xi_f)| \left(\xi_f - \xi\right) = M \left|\Delta(\xi_f)\right| \left(\xi_f - \xi\right),$

Step C: Optimal linear down-ramp for self-injection, LWFA. For all Z, all $Z e^-$ comove. We stick to linear downramps

 $\widetilde{n_0}(z) = n_0 + \Upsilon(z - z_s), \qquad z_b \le z \le z_s, \quad (22)$ $\Upsilon = \frac{n_0 - n_b}{z_s - z_b} < 0.$ Let (ξ_{br}, Z_{br}) be the pair (ξ, Z) with $Z \in [z_b, z_s]$ and the smallest ξ such that $\hat{J}(\xi, Z) = \hat{J}(\xi, Z)$ 0. For $\xi > \xi_{br}$ a bunch of $Z \sim Z_{br}$ electron layers start breaking the PW locally. $P(\xi, Z_{br})$ fulfills (16). The Z_{br} layer earliest crosses other ones; at each $\xi > \xi_{br}$ it overshoots a new layer that $\hat{z}_{i}^{\prime} = \frac{1 - \hat{s}_{i}^{2}}{2\hat{s}^{2}}, \quad \hat{s}_{i}^{\prime}(\xi) = K \Big\{ \widetilde{N}[\hat{z}_{i}(\xi)] - \widetilde{N}\Big[\hat{Z}_{e}(\xi, \hat{z}_{i}(\xi))\Big] \Big\}. (16)^{\text{at each } \xi > \xi_{br} \text{ it overshoots a new layer that}}_{\text{up to } \xi \text{ has evolved via (12a) and contributed to} \Big\}.$ the PW. It does for ever, helped by their mutual repulsive forces; hence the Z_{br} are the fastest electrons injected and trapped in a trough of the PW by the first WB. Fixed $z_{i0} \ge z_q$, let $\xi_0 > \xi_{br}$ be the 'instant' when $\hat{z}_e(\xi_0, Z_{br}) = z_{i0}$. For $\xi \geq \xi_0$ $(\hat{z}_i, \hat{s}_i) \equiv (\hat{z}_e(\cdot, Z_{br}), \hat{s}(\cdot, Z_{br}))$ is given by (17) and has $s_i^m < 0$. We determine parameters Υ, z_b requiring that: $P(\xi_0)$ is in the upper part of the cycle of Fig. 2.c, i.e. at $\xi = \xi_0$ the Z_{br} layer crosses plateau ones having negative velocity Δ' ; δs as close as possible to -1, so that (20) applies. Step D: choose an up-ramp growing from 0

t of the e^- fluid element d^3X initially located at $\mathbf{X} \equiv (X, Y, Z), \ \hat{\mathbf{x}}_e(\xi, \mathbf{X}) \equiv \text{the same position as a}$ function of ξ . We dub as 'Z electrons' the e^{-s} in the layer [Z, Z+dZ] for $t \leq 0$. In the hydrodynamic regime (HR) the maps $\mathbf{x}_e(t, \cdot) : \mathbf{X} \mapsto \mathbf{x}$, $\hat{\mathbf{x}}_e(\xi, \cdot) : \mathbf{X} \mapsto \mathbf{x}$ are one-to-one for all t, resp. ξ . The inverses $\mathbf{X}_{e}(t, \cdot), \mathbf{X}_{e}(\xi, \cdot)$ fulfill

> $\mathbf{X}_e(t, \mathbf{x}) = \hat{\mathbf{X}}_e(ct - z, \mathbf{x}).$ (6)

Figure 1:Two particle worldlines (WLs) λ_1, λ_2 in Minkowski space; they intersect the support (pink) of a plane electromagnetic (EM) wave of total length l in the positive z direction. Since each WL intersects once every hyperplane $\xi = \text{const}$ (beside every hyperplane t = const), we can use ξ rather than t as a parameter along it. The front, end of the EM wave intersect different WLs at different *t*-instants $(t_{1i} \neq t_{2i}, t_{1f} \neq t_{2f})$, but at the same ξ -instants $\xi_i = 0, \xi_f = l$.

Ing unknowns $\Delta(\xi, Z) = z_e(\xi, Z) - Z$, s satisfy	
$\hat{\Delta}' = \frac{1+v}{2\hat{s}^2} - \frac{1}{2},$	$\hat{s}' \!=\! K \Big\{ \! \widetilde{N} \Big[Z \!+\! \hat{\Delta} \Big] \!-\! \widetilde{N}(Z) \! \Big\}, (12)$
$\hat{\Delta}(0,Z) = 0,$	$\hat{s}(0,Z) = 1,$
$v \equiv \hat{\mathbf{u}}_e^{\perp 2} = \left[\frac{e\hat{\mathbf{A}}^{\perp}}{mc^2}\right]^2 = \left[\frac{e\boldsymbol{\alpha}^{\perp}}{mc^2}\right]^2, K \equiv \frac{4\pi e^2}{mc^2}$	

Eqs (12a) are a Z-family of decoupled ODEs, Hamilton eqs $\hat{\Delta}' = -\partial \hat{H}/\partial \hat{s}, \, \hat{s}' = \partial \hat{H}/\partial \hat{\Delta}$ of a 1-dim system: $\xi, \dot{\Delta}, -\hat{s}$ play the role of t, q, p, $\hat{H}(\hat{\Delta}, \hat{s}, \xi; Z) \equiv \gamma(\hat{s}; \xi) + \mathcal{U}(\hat{\Delta}; Z),$ $\gamma(s;\xi) \equiv \frac{s^2 + 1 + v(\xi)}{2s}, \quad \frac{\mathcal{U}(\Delta;z)}{K} \equiv \int_{\tilde{z}}^{z+\Delta} \widetilde{N}(\zeta) - \widetilde{N}(z)\Delta;$ γ -1, \mathcal{U} act as kinetic, potential energy (mc^2 units). We can easily solve (12) in the unknown $\hat{P} \equiv$ (Δ, \hat{s}) numerically, or by quadrature for $\xi \geq l$.

Hydrodynamic regime up to WB

The HR holds as long as, for all Z, $\hat{J} \equiv \left| \frac{\partial \hat{\mathbf{x}}_e}{\partial \mathbf{X}} \right| = \frac{\partial \hat{z}_e}{\partial Z} > 0.$

(14)

The identity $\hat{z}_e[\xi + i\xi_H(Z), Z] = \hat{z}_e(\xi, Z)$ holds for $i \in \mathbb{N}, \xi > l$; differentiating w.r.t. Z one finds [3] $\hat{J}(\xi + i\xi_{H}, Z) = \hat{J}(\xi, Z) - i \Phi(Z) \Delta'(\xi, Z);$ (15) $\hat{z}_i(\xi) \simeq \frac{1}{2 \left[M \Delta(\xi_f) \right]^2 (\xi_f - \xi)} \xrightarrow{\xi \to \xi_f} \infty. \quad (18)$

Solving (18) for $\xi_f - \xi$ we express $\hat{s}_i, \hat{\gamma}_i$ vs. z_i :

$$\gamma_i = \frac{1}{2s_i} + \frac{s_i}{2} \simeq F \frac{z_i}{\lambda} \xrightarrow{z_i \to \infty} \infty, \qquad (19)$$

 $F \equiv M\lambda |\Delta(\xi_f)|$. In this model the PW phase velocity is c, trapped test e^- cannot dephase, their energy grows \propto travelled distance. (19) is reliable where pulse depletion is negligible, $(13 \stackrel{0}{=} z_i \leq z_{pd})$. Fixed z_i, n_0 , if ξ_0, z_0, s_0 lead to $\delta s = -1$, then $|\Delta(\xi_f)| = |\Delta_m|$, and γ_i is maximized: $\gamma_i(z_i, n_0) \simeq \sqrt{j(
u)} \ z_i/\lambda;$ (20)

here $j(\nu) \equiv 8\pi^2 \nu [\bar{h}(\nu) - 1]$, and $\bar{h}(\nu)$ is the final e^- energy transferred by the pulse if $\widetilde{n_0}(z) = n_0$, vs. $\nu \equiv n_0/n_{cr}$. Our 4-steps optimization procedure:

Step A: Computing $\xi_{H}(\nu)$, $h(\nu)$, $j(\nu)$ for the given pulse. Done in few seconds using Mathematica. In Fig. 3 we plot $h(\nu), j(\nu)$ and their maxima ν_h, ν_j for the pulse of Fig. 2.a. Step B: Optimal choice for the plateau **density** n_0 . If the plasma longitudinal thickness available for WFA is $z_i \leq z_{pd}(\nu_j)$, choose $\nu = \nu_j$:

$$\gamma^{\scriptscriptstyle M}_i(z_i)\simeq \sqrt{j(
u_j)\,z_i/\lambda}.$$

(21)

to n_b in a short interval $0 \le z \le z_b$ and preventing WB at $\xi < \xi_{br}$; that $\widetilde{n_0}(z) \simeq O(z^2)$ helps [3,4].

Applying our optimization procedure to the pulse of Fig. 2.a we obtain density and results of Fig. 4. If $\lambda = 0.8 \mu \text{m}$, F = 0.28 leads to the remarkable energy gain $0.35mc^2 \simeq 0.1785$ MeV per μ m.

If the pulse is cylindrically symmetric around \vec{z} with waist R, by causality our results hold strictly in the causal cone (of axis \vec{z} , radius R) trailing the pulse, approximately in a neighbourhood thereof. Acknowledgements. We thank P. Tomassini for

the FB-PIC simulations leading to Fig.s (4) right.

References

[1] G. Fiore, arXiv:2305.04580, to appear in the IEEE Proceedings of the Workshop AAC'22. [2] G. Fiore, On maximizing LWFA by tailoring the plasma density, in preparation. [3] G. Fiore, S. De Nicola, T. Akhter, R. Fedele, D. Jovanovic, Physica D 454 (2023), 133878. [4] G. Fiore, M. De Angelis, R. Fedele, G. Guerriero, D. Jovanovic, Mathematics 10, 2622 (2022). [5] G. Fiore, J. Phys. A: Math. Theor. 51, 085203 (2018), 085203.