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2. Measuring plasma recovery time

Probe-bunch technique for observing the long-term ion motion!®
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« Same plasma conditions need to be recovered before the next acceleration event.
« Long-term ion motion is the most dominant limitation in ns-ps timescales!>57,
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4. Plasma characterisation

« Similar plasma properties — self-consistent ion-mass-dependent

recovery time comparison.

« Optical Emission Spectroscopy (OES) — find similar working points

In Ar and H,.

* OES: Ar is doped with 3% H, — spectral H-alpha line broadening

— plasma density value.[0]

 Estimation of n, is based on gas supply system measurements and

simulations.
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rate, M — molecule mass.

* N, =

p. — capillary pressure, r,, — mass flow rate, r;, — flow

« Equivalent conditions (same n., n,, n,, a) In H, and Ar occur under

these assumptions:
* The initial discharge-driven plasma and gas expulsion is
similar for Ar and H, at their pressures,

« Further post-discharge atomic density is constant and same

for both.

* The assumptions could be verified by MHD simulations of gas-

capillary discharge.

5. Status
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During and After High-Voltage Discharge

Limit #2: —
?

« Cumulative heating in plasma & infrastructure — Limit #2 and #3.
— Limit #1.

* If recovery time ty,~ 10 ns:
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3. Long-term ion motion dependencies

Plasma is not a fundamental limit for repetition rate in future facilities.
_imit #1 O(10) ns.
~lexibility In bunch train shaping.

time

Wakefield strength

Plasma wave ponderomotive force on ionslé.

Plasma density

Bunch-plasma coupling, plasma pressure gradientl8l.

lonisation degree

nteractable material in the capillary!®!.

Temperature

Diffusion rate, ion acoustic wave velocity!8-°9] — T-05,

lon mass

Diffusion rate, ion acoustic wave velocityl8.°] — mo-5,

 Reduced ion mass — reduce the recovery time.
« Assumption: all other parameters stay the same.
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 FLASHForward: infrastructure to explore high-repetition-rate related dynamics in plasma:

* Generating Hydrogen plasma,

 FLASH electrons from GHz-double-bunches or MHz-bunch-trains.
 Different plasma settings in the capillary have been investigated.
« Characterised plasma needed for ion-mass-based recovery time reduction experiments.
 Beam-based measurements have been undertaken at FLASHForward; analysis ongoing.
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