Plasma density and ionisation degree evolution with long-term ion motion in a beam-driven plasma-wakefield accelerator

Judita Beinortaite^{*1,2}, J. Björklund Svensson¹, J. Chappell³, M. J. Garland¹, H. Jones¹, C. A. Lindstrøm⁴, G. Loisch¹, T. Parikh¹, F. Peña^{1,5}, S. Schröder¹, S. Wesch¹, M. Wing², J. Osterhoff^{1,5}, and R. D'Arcy^{1,3}.

1 DESY, Hamburg, Germany; 2 University College London, UK; 3 University of Oxford, UK; 4 University of Oslo, Norway; 5 Universität Hamburg, Germany.

1. High-repetition-rate	e requirements	Facility	Bunch separation within a macro-pulse	$f_p \begin{array}{c} \text{Macro-pulse} \\ \text{repetition rate} \end{array}$	Number of bunches nb per macro-pulse	Limit #3: ? ⊎ ↑	
 High-repetition-rate PWFA needed in future facilities. 	$\begin{aligned} \mathcal{L} \propto f_{rep} \\ B_{int} \propto f_{rep} \\ f_{rep} = n_b f_p \end{aligned}$	ILC ^[1]	500 ns	5 Hz	1000-5400	/ phas	
		CLIC ^[2]	0.5 ns	50 Hz	312	Limit #1:	
		FLASH ^[3]	1000 ns	10 Hz	800		
		PWFA	100 000 000 ns	10 Hz	1		
		PWFA(2023) ^[4]	1000 ns	1 Hz	12	— Limit #2: — ?	

2. Measuring plasma recovery time

Recent results

Probe-bunch technique for observing the long-term ion motion^[5]

- Same plasma conditions need to be recovered before the next acceleration event.
- Long-term ion motion is the most dominant limitation in ns-µs timescales^[5,6,7].

- Cumulative heating in plasma & infrastructure \rightarrow Limit #2 and #3.
- + required $f_{rep} \rightarrow Limit \#1$.
- If recovery time $\tau_{\rm H_2} \sim 10$ ns:
- Plasma is not a fundamental limit for repetition rate in future facilities.
- Limit #1 O(10) ns.
- Flexibility in bunch train shaping.

3. Long-term ion motion dependencies

Key parameters that could influence ion motion recovery timescale

Wakefield strength Plasma wave ponderomotive force on ions^[6].

Plasma density Bunch-plasma coupling, plasma pressure gradient^[8].

Ionisation degree Interactable material in the capillary^[5].

Temperature Diffusion rate, ion acoustic wave velocity^[8,9] \rightarrow T^{-0.5}.

Ion mass Diffusion rate, ion acoustic wave velocity^[8,9] \rightarrow m^{0.5}.

- Reduced ion mass \rightarrow reduce the recovery time.
- Assumption: all other parameters stay the same.

FLASHFORWARD

- for both.
- The assumptions could be verified by MHD simulations of gascapillary discharge.

5. Status

- FLASHForward: infrastructure to explore high-repetition-rate related dynamics in plasma: • Generating Hydrogen plasma,
 - FLASH electrons from GHz-double-bunches or MHz-bunch-trains.
- Different plasma settings in the capillary have been investigated.
- Characterised plasma needed for ion-mass-based recovery time reduction experiments.
- Beam-based measurements have been undertaken at FLASHForward; analysis ongoing.

References:

[1] ILC. arXiv:0712.1950v1 (2007). [2] CLIC. CERN-2012-007 (2012). [3] FLASH. New J. Phys. 18 062002 (2016). [4] G. Loisch, talk in WG1, 21/09/2023, 16:25. [5] R. Zgadzaj et al. Nat. Commun. 11.4753 (2020). [6] M. F. Gilljohann et al. Phys. Rev. X 9.011046 (2019). [7] R. D'Arcy, et al. Nature 603, 58–62 (2022). [8] J. Chappell, PhD Thesis, UCL (2021). [9] F.F. Chen, Springer (2016). [10] J. M. Garland et al. Rev. Sci. Instrum. 92.013505 (2021).

High Energy Physics Group, Department of Physics and Astronomy University College London

6th EAAC * Contact: judita.beinortaite@desy.de http://forward.desy.de 17-23 September 2023, Isola d'Elba, Italy

ACKNOWLEDGEMENT

This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.

