

- channel size is smaller than the blowout radius.
- to different longitudinal positions position, creating elongated on-axis trailing electrons.

bunches of positrons may be available in coming years.

- difference in a narrow vs. wide channel.
- electrons cross the axis.

Charge	Energy	ε _{x, γ}	σ_{ξ}	σ_{r}
1.5 nC	10 GeV	10, 10 µm-rad	20 µm	20 µm

ionization needs to be prevented.

"x" no ionization. (b) Beam ionization rate for Helium.

This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.

Valentina Lee, Severin Diederichs, Robert Ariniello, Carlo Benedetti, Eric Esarey, Spencer Gessner, Mark Hogan, Jens Osterhoff, Carl Schroeder, Maxence Thévenet, Michael Litos

Energy (mJ)	3
se Duration (fs)	5
ak Power (TW)	1

Laser Ionized Plasma Source							
Туре	Species	Optics	Gas Density	Laser Energy	FWHM		
Wide	H2	0.7° Axicon	5e16cm ⁻³	304mJ	160.4µm		
Narrow	He	Diffractive Optics	5e16cm ⁻³	140mJ	56.8µm		

The bunch length (σ_{ε}) is stretched to 35µm, which is archivable experimentally by uncompressed the beam via the final focus magnets.

This work is supported by U.S. DOE Grant No. DE-SC0017906 and U.S. NSF Grant No. PHY-2047083.

existence of narrow plasma in single-bunch PWFA experiments.