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1. PWFA and Velocity Bunching

Experimental characterization of the timing-jitter

effects on a beam-driven plasma wakefield accelerator
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4. Measurements and Results
• The EOS allows for the measuring of the relative distance between driver and witness bunch, while the witness energy is measured by using a spectrometer

𝑚1 = 10 ± 1
𝐾𝑒𝑣

𝑓𝑠
𝑚2 = 8.2 ± 0.6

𝐾𝑒𝑣

𝑓𝑠

• In Figures 10 and 11 are shown two different sets of measurements in which the compression phase is slightly different: when the phase is smaller the compression is larger 

and therefore, the distance between the bunches increases.

• The different slope is dependent on the plasma density (the used density for the experiment is ∼ 1015 𝑐𝑚−3): the first measurement corresponds to a larger density and so it 

is higher the slope with respect to the second case.

𝜙1 = 132.10 𝑑𝑒𝑔
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FIG. 2: Velocity
bunching technique

FIG. 8: Bunch measurement
with the EOS system

FIG. 9: Witness energy 
measurement

FIG. 11: Second set of measurementsFIG. 10: First set of measurements

𝑡1𝑚𝑒𝑎𝑛 = 1.0 ± 0.1 𝑝𝑠 𝑡2𝑚𝑒𝑎𝑛 = 1.2 ± 0.1 𝑝𝑠

3. Beam Diagnostics: Electro-Optical Sampling

• The Electro-Optical Sampling is a non-intercepting and single-shot device used for 

measuring of the distance in time between the driver and witness beam

• The working principle is based on an external field, i.e. the beam coulomb field, which

induces birefringence on an electro-optical crystal, ZnTe in this case.

• The field induces a change in the refractive indexes in the crystal, which can be 

measured with an opportune polarized laser pulse that crosses the crystal.

• This produces a phase delay Γ(𝑡) between the laser horizontal and vertical components, 

which is proportional to the beam electric field, following the same temporal profile.

FIG. 5: Experimental setup scheme of the EOS system
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FIG. 6: Working principle of the spatial decoding scheme

FIG. 7: Layout of the EOS 
chamber, the laser (red line) 
crosses the crystal with an 
incident angle of 30 𝑑𝑒𝑔

• In this scheme the laser crosses the crystal with an angle 𝜃 = 30 𝑑𝑒𝑔, 

therefore different points across the transverse profile of the laser pass 

through the crystal at different times and acquire a different polarization

• The time coordinate 𝑡 can be related to the spatial coordinate 𝑥 through 

the formula: 

• In Plasma Wakefield acceleration a driver beam is 

injected into a plasma target, exciting a plasma 

wave which accelerates the witness beam

• However the acceleration is affected by the timing-

jitter of the distance between driver and witness 

beam, resulting in a jitter in the witness energy  

• The plasma has been stabilized with a laser pulse, therefore the timing-

jitter effect on the bunches is due mainly to the RF instabilities [1].

FIG. 1: Plasma wakefield acceleration scheme

2. Experimental setup

FIG. 4: Plasma capillary

FIG. 3: Layout scheme of 
the experiment
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