

WEIZMANN INSTITUTE OF SCIENCE

Beam current from downramp injection in electron-driven nonlinear plasma wakefields

C. Hue,¹ A. Golovanov,¹ S. Tata,¹ S. Corde,² V. Malka¹

¹Weizmann Institute of Science, Rehovot, Israel

²LOA, ENSTA Paris, CNRS, Ecole Polychnique, Institut Polytechnique de Paris, France

Abstract

We study the stability of a plasma wake wave and the properties of density-downramp injection in an electron-driven plasma accelerator. Most importantly, we find that the current of the injected bunch primarily depends on just one parameter J_{eff} which combines both the properties of the driver (its current and duration) and the plasma density.

Paper: C. Hue et al. arXiv:2307.00515 (submitted to JPP)

Driver evolution in PWFA

There are several limiting factors for plasma-wakefield acceleration (PWFA):

- **Head erosion** is important mostly when the target is not pre-ionized and leads to the loss of the head of the bunch.
- Hosing instability can be suppressed by driver's non-uniform deceleration.
- Beam collapse happens when the driver's electrons decelerate to 0 energy.

Scaling of the injected beam current

The introduce the **power of the bubble** $\Psi(\xi) = \int (cW - S_{\gamma}) d^2 \mathbf{r}_{\perp}$. In the absense of drivers and witness, $\Psi(\xi)$ = const is an integral. It serves as the measure of the nonlinearity of the bubble.

For a needle-like flat-top electron driver, it can be calculated as (see Golovanov et al. PPCF 2021)

$$\Psi \approx \frac{\sqrt{2mc^2}J_A}{e} \left(\frac{J_{\text{eff}}}{J_A}\right)^{3/2} \left[1 - \frac{(k_p \xi_b)^{4/3}}{\sqrt{128J_{\text{eff}}/J_A}}\right]$$

 $J_A = 4\pi \epsilon_0 mc^3 / e \approx 17$ kA is the Alfvén current, and the effective current is intoduced

 $J_{\rm eff} = J_{\rm b} (k_{\rm p} \xi_{\rm b})^{2/3}$

For short high-current drivers, $\Psi \propto J_{eff}^{3/2}$, thus J_{eff} is the main parameter determining the properties of the bubble.

We expect that the injected current J_{w} is fully determined by Ψ and therefore J_{eff} , $J_{\rm W} = f(\Psi) = f(J_{\rm eff}).$

Simulation with QuickPIC. Analytical model from Golovanov et al. PRL 2023. Bunch: 250 MeV, 137 pC, $\xi_{\rm b}$ = 13.4 µm (flattop), σ_r = 0.52 µm (Gaussian). Plasma density n_0 = 3.125 × 10¹⁷ cm⁻³.

The main limitation is the **beam collapse**. It happens at the distance $L_{col} = mc^2 \gamma / eE_{max}$ when the electrons which feel the peak field E_{max} lose their kinetic energy and cannot keep up with the wake.

The effic	L _{col} [mm] η, %						
	model	sim.	model	sim.	$k_{\rm p}\xi_{\rm b}$	$n_{\rm b}/n_0$	n ₀ [cm ⁻³]
	73	65	6.0	4.8	3.99	15	2.5 × 10 ¹⁸
η	81	71	7.1	5.5	3.45	20	1.875 × 10 ¹⁸
	87	76	8.1	6.7	2.82	30	1.25 × 10 ¹⁸
There is	93	77	11.6	9.4	1.99	60	6.25 × 10 ¹⁷
donsity	93	75	14.1	11.6	1.63	90	4.17 × 10 ¹⁷
uensity	92	73	16.4	13.5	1.41	120	3.125 × 10 ¹⁷

ciency of acceleration is $\langle \gamma \rangle_0 - \langle \gamma \rangle_{col} \quad \langle E_z \rangle$

$$\gamma = \frac{\langle \gamma \rangle_0}{\langle \gamma \rangle_0} \approx \frac{\langle \gamma \rangle_1}{E_{\text{max}}}$$

an optimum plasma for highest efficiency η .

Influence of bubble nonlinearity and downramp length

For a fixed plasma density, there are two ways to change J_{eff}: by changing the current $J_{\rm b}$ and by changing the driver length $\xi_{\rm b}$. We run FBPIC simulations with drivers with two different shapes, rectangular and Gaussian, and explore the dependence of $J_{\rm w}$ on $J_{\rm eff}$.

Fixed driver length

Fixed driver current

If we fix $J_{\rm b}$ and change $J_{\rm eff}$ by changing the length, initially there is a linear dependence.

We consider injection in a linear density downramp. If we increase the nonlinearity of the bubble $n_{\rm b}/n_{\rm o}$, the injected current J_{w} increases. If we change the downramp length L, the injected current J_{w} stays almost the same.

When $\xi_{\rm b}$ is increasing, the injected current $J_{\rm w}$ starts to rapidly decrease.

We can describe this by introducing a correction based on the term we see for Ψ

There is a threshold value of *L* above which injection is unstable or does not exist.

However, this correction cannot explain a more complex behavior during the

downramp injection.

