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Introduction ]
Numerical Study
The motivation for this work arises Using the code FBPIC [4], we looked for
from the needs of the Multiscan 3D the best set of laser and plasma y
Project [1]. We want to exploit the parameters able to produce the highest S S
compactness of Laser-Plasma charge-per-Joule. £ -ty et
Accelerators (LPA) in order to develop We observed three effects (Fig.2): - '
an X-ray source for the 3D tomography + Non-linear charge vs laser energy : _____ e
of cargos (Fig.1). e Constant charge at n_>5.5x10%% cm3 B ool 7 ’ .
* Lower laser energy shift of the S , A,
This requires both a numerical and maximum charge-per-Joule v - 9.5x10%° cm-3
experimental study to maximize the 0.2 0.4 0.6

beam charge per second [2,3] in the
energy range of interest (i.e., <10
MeV).

Here, we first discuss a preliminary
numerical study and mainly focus on
the experimental results obtained at
the Laboratoire d’Optique Appliquée
(LOA), where we obtained charges in
the order of 30 nC.

Fig.1: Concept design of an LPA-based cargo
tomography scanner.
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laser energy for different n_ in a cone of 1 rad.
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Most efficient condition:
n,=5.5x10"cm3 at 0.1

e Charge-per-Joule ~ 75 nC/]

e Charge=7.5nC (0.47% >10 MeV,
Fig.3)

Average energy = 1.62 MeV
FWHM divergence ~ 380 mrad
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Fig.3: Energy spectrum for the most °
efficient configuration. o

Experimental Setup and Results

25
We have employed three main diagnostics (Fig.4): We partially reproduced the numerical +4+- 1.18x10'° cm~3
e  Energy spectrometer results employing the f/4 parabola (Fig.5). =20 - 3'55"10113 C"‘:_:
e Beam profile monitor (BPM, charge measurement) _‘é Tt 8.29x107 cm
*  Phasics (plasma density measurement) Most efficient condition (2 mm nozzle): 5‘15'
* n, =10*cm=at 0.12) o)
e Charge-per-Joule =45 nC/) >
©
Energy BPM + Charge = 5.34£0.38 nC 5
Spectrometer * Average energy = 5.1+0.22 MeV PR Lol
e FWHM divergence ~ 320 mrad 0 ' -
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Fig.4: Experimental setup and 0.4 mm nozzle tomography.

Laser Parameters
* Worwhm ~ 2.64 um (f/4) & 5.79 um (f/8)
* Max. Laser Energy ~ 1
 Laser duration (FWHM) ~ 27 fs
e a0=4.38(f/4) and 2.56 (f/8)

Targets
Supersonic Nozzles: 0.4 mm (FMTC
Center) and 2.0 mm exit diameter
Gas: pure N, (10, 30 and 70 bar)
n,~ 10%° cm= (0.4 mm) and 10%! cm?
(2 mm)

Conclusions

The numerical and experimental results demonstrate the possibility to use small and
reliable laser systems (~100W) to produce extremely high currents (~4.5 uC/s), which
are important for the Multiscan 3D Project.

What’s next?

 We are performing new numerical
studies: the electrons gain energy
from wakefield acceleration, wave-
breaking [5] and stochastic heating
[6] (Fig.7)

* During the experiment have employed
a dosimetry phantom, its analysis will
give us more insights regarding the
electron beam properties (i.e., beam
charge and divergence).
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Fig.7: Example of injected (top) and non-injected
(bottom) electrons

Fig.6: Energy spectrum for the most efficient
configuration (2 mm nozzle).

Fig.5: Charge-per-Joule as functions of the laser
energy for different n, for the 0.4 mm (top) and 2
mm (bottom) nozzle.

Results with 2 mm nozzle:

e FWHM divergence ~ 200-300 mrad

» f/8 parabola: less divergent electrons (i.e., <200 mrad), no effect on the charge and
the energy

* No relevant effect for n_ > 3.75x10%°cm3
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