Towards spin-polarised electron beams from a laser-plasma accelerator

Felix Stehr^{1,2*}, Simon Bohlen¹, Louis Helary¹, Jennifer Popp^{1,2*}, Jenny List¹, Gudrid Moortgat-Pick², Jens Osterhoff¹ and Kristjan Pöder¹

 $N_{\uparrow} + N_{\downarrow}$

1 Deutsches Elektronen-Synchrotron DESY, Hamburg

* contact: felix.paul.georg.stehr@desy.de 2 University of Hamburg,

What makes polarised beams so interesting?

- Polarised beams are used extensively for
 - Particle physics
 - Nuclear physics
 - Atomic physics
 - Material science •
- Polarised electron beams can generate polarised photon and • positron beams
- Longitudinal spin of main interest in high energy physics

Concept of polarised LPA

Three step recipe:

- Align bonds of diatomic molecules with a linearly polarised IR pulse
- II. Photodissociation with circularly polarised UV pulse
- III. Colliding pulse injection and acceleration

- Total angular momentum projection quantum number • preserved \geq Polarised valence electrons
- From PIC simulations: (Talk Kristjan Poder: 19.09.23 @ 17:45) Colliding pulse injection enables **P>90%** [6]

Polarimetry of LPA electron beams

Transmission polarimetry

$$\Gamma \propto \exp(-n L_B \sigma_{pol} \vec{P}_{\gamma} \vec{P}_e)$$

- Polarisation dependent transmission of Bremsstrahlung through magnetised iron absorber
- 2. Photon detection
- Polarisation proportional to transmission asymmetry

Key challenge: The dissociation

Choice of Gas

Gas Pol. e-Unpol. e- for **Absorption cross-**

- Ionisable unpolarised electrons ulletdilute polarisation
- **HCI** best choice for now (P->10%)
- Future option H_2 (P->100%)

The dissociation laser

		a ₀ < 2	section @ 210 nm
HF	2	7	
HCI	2	15	6e-21 <i>cm</i> ²
HBr	2	23	7e-19 <i>cm</i> ²
HI	2	25	8e-19 <i>cm</i> ²

Requirements

- Wavelength $\sim 210 \text{ nm} [7]$
- Synchronised to driver pulse
- $\sim 1 \text{ ps}$ pulse length
- $\sim 0.5 \text{ mJ}$ to fully dissociate a volume of the size of the plasma bubble ($\emptyset \sim 10 \ \mu m$)

Generation from TiSa by cascading SHG

- Stretching UV pulse
- Maximising conversion efficiency (> 0.5%)

Polarimeter installed

System test performed end of August

Next steps

- Demonstrating the dissociation of HCI [7] with TiSa-driven UV source
- Start to end simulations of LEAP ongoing: LPA + APL + Polarimeter
- Zero polarisation measurements in October
- Demonstration experiment

ACKNOWLEDGEMENT – This poster presentation has received support from the European Unions's Horizon 2020 Research and Innovation programm under Grant Agreement No 101004730.

HELMHOLTZ

Deutsches Elektronen-Synchrotron DESY Ein Forschungszentrum der Helmholtzgemeinschaft

[1] Temporal, M et al., Nucl. Fusion 52, 103011 (2012) [2] Hupin, G. et al., Nat. Commun. 10, 351 (2019) [3] S. Bohlen et al., Phys. Rev. AB 25, 031301 (2022) [4] A. Spiliotis et al., Light Sci. Appl. 10, no 35 (2021) [5] J. Popp et al., JPS Conf. Proc. 37, 021104 (2022) [6] S. Bohlen et al., arXiv:2304.02922 [physics.acc-ph] [7] Sofikitis, D. et al., Phys. Rev. Lett. 121, 083001 (2018)