Rooting out the gremlins - stable LWFA operation at the PW frontier

Stefan Karsch^{1,2}

¹ Centre for Advanced Laser Applications, LMU Munich ² Max-Planck Institute for Quantum Optics

ATLAS-3000 at CALA: Schematic system layout

ATLAS-3000 main amplifier by THALES LAS 90 |, | Hz,

ATLAS-3000: on-paper performance

near field

far field

$I_{max}(f/22) = 4x |0|^9$ geom. Strehl: > 0.93 15 10 t_{FWHM} ∼28 fs -200-100 100 200 0 time[fs]

contrast

First laser wakefield acceleration results: LWFA by shock-front injection

old laser, 80 TW on target f/22, 5 mm gas jet

upgraded laser, 250 TW on target f/22, 5 mm gas jet

A few hours after turning on pump lasers...

Optimized spectrum...

First step:

- f/33
- Cheap trick: mixed gas for ionizationassisted shock injection

Optimized near field...

Optimized energy...

Optimized near field...

Optimized energy...

Correlations ? ... not clear

100

-200

300

400

Hidden parameters?

Chromatic lens causes pulse front curvature (PFC)

Off-center bundle in chromatic lens causes PFC and pulse front tilt (PFI)

(A(po)) chromatic lenses are free from PFT/PFC' \Rightarrow Triplet lens expander between AMP1 and AMP2 is designed apochromatic within lambda/50

Yet still detect PFT after beam shift \Rightarrow expander in practice is not free from STCs

Replace "perfect" lens telescope by reflective expander

Spatio-Temporal Couplings (STCs) by chromatic optics (beam expander telescopes)

Suppression of STCs improves electron performance (pure hydrogen)

Lens expander, aperture after compressor 8J on target, f/33

no expander, no aperture 8J on target, f/33

Falcon device:

- Spectrally resolved Shack-Hartmann-wavefront sensor
- Measurement of Spatio-Temporal Couplings by spectral wavefront retrieval
- Take 10 images per filter position to average out pointing jitter

Measuring spatio-temporal couplings using modal spatio-spectral wavefront retrieval

N. WEISSE,^{1,†} D J. ESSLINGER,^{1,†} D S. HOWARD,² F. M. FOERSTER,¹ F. HABERSTROH,¹ D L. DOYLE,¹ P. NORREYS,² J. SCHREIBER,¹ S. KARSCH,¹ AND A. DÖPP^{1,*}

¹Ludwig–Maximilians–Universität München, Am Coulombwall 1, 85748 Garching, Germany ²Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom [†]These authors contributed equally. *a.doepp@lmu.de

820 nm

- 0.06

0.04

- 0.02

- 0.00

-0.02

-0.04

- 0.150

- 0.125

- 0.100

- 0.075

- 0.050

- 0.025

- 0.000

-0.025

- -0.050

-0.050

PtV < 0.2 λ

		8.5.23	11.5.23	15.5.2
	Pulse front tilt µrad/nm	-2.6e-6	-2.0e-5	-7.7e-
	Pulse front tip µrad/nm	-7.7e-6	-6.2e-5	- . e-

Pointing and fluence variations by air turbulence (after eliminating heat sources): Moving from 100 TW to PW: as beam size and optical path increase, so does susceptibility to air turbulence.

Recently: more foam walls:

 $\Rightarrow \sigma_{\rm F} = 2.8\%$

(shot-to-shot energy variation < 1%)

Out-of-focus, fluence variations increase:

- fluence fluctuates much stronger out-of-focus than at focus
- Self-focusing at target gradient is sensitive to intensity fluctuations
- Probable cause: air turbulence in laser housing

us tuations

Going from 6m focal length, f/33 to 10 m focal length, f/55:

 $f = 50 \text{ cm} \rightarrow 1 \mu \text{m} = 2 \text{mrad}$

Better injection control: Hydrodynamic optical field ionized shocks

- gradient

HOFI shock stability

Supersonic wire shocks

HOFI shocks

Monoenergetic GeV beams 20 mm slit nozzle target, f/55

Hunting for correlations: Shot-to-shot diagnostics

400 shots each, relying on statistical fluctuations

electron energy vs. pulse duration

Thank you for your attention!

Stefan Karsch, Andreas Döpp, Moritz Foerster, Hao Ding, Max Gilljohann, Johannes Götzfried, Sabine Schindler, Florian Haberstroh, Katinka v. Grafenstein, Faran Irshad, Enes Travac, Albert Schletter

Hybrid Data

Thank you for your attention!

Btw: We are hiring, too...

We are hiring :

- CALA postdoctoral fellowship (see https://pulse.physik.uni-muenchen.de)
- PHD positions

Multi-objective and multi-fidelity Bayesian optimization of laser-plasma acceleration

F. Irshad,¹ S. Karsch,^{1,2} and A. Döpp^{[],2,*} ¹Ludwig-Maximilian-Universität München, Am Coulombwall 1, 85748 Garching, Germany ²Max Planck Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

(Received 2 October 2022; accepted 17 January 2023; published 31 January 2023)

...currently successfully implemented in the experiment... stay tuned!

[mrad] Divergence

Self injection

Blade induced shock injection

Optically induced shock injection

Centre for Advanced Laser Applications (CALA)...

... is operated by the Ludwig-Maximilians-Universität München (LMU) ... serves three university user groups ... hosts approx. 40 staff members

... houses two laser systems, ATLAS-3000 and PFS-pro ... and five experimental beamlines

Multi-GeV beams 25 mm gas cell target, f/55

f/37

Optically induced shock injection

Energy [MeV]

	-			0.25
			~10 pC	_
			over	0.20
			2 GeV	0 15 8
	Γ			0.13 *
				0.10 a
				0 05
				0.00 c
		 		0.00
			$\sim 25 \text{ nC}$	0.45
			25 pc	0.40
	ſ	1	at	0.35
			I Gev	
	<u> </u>	<u> </u>		
				0.20 t
		I		0.10
				0.05
				0.00
1000	1500	2000		

Hybrid LWFA-PWFA

Latest preliminary results:

GeV-scale hybrid

• Implementation of Trojan horse scheme (HZDR)

	I	Ι	I	
-	-			
		I		
800	1000	1200	1400	16

Simulation: laser wakefield acceleration (LWFA)

propagation direction

propagation direction