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Challenges of High Repetition Rate

* High repetition rate lasers not available at PW-level required for GeV electron
acceleration

* Joule + lasers available at kHz repetition rate based on thin disk technology, but with ps
pulse lengths
* 1.1J@4.5ps -CSU
* Trumpf/Cala1lJ) @ <600 fs
e Multipass broadening — 100 mJ @ 40 fs

e Solution: Convert long pulse into pulse train to resonantly drive wake at lower peak
intensity
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Multi-pulse Scheme - Modulator

* Short (<100 fs) seed, 10s mJ seed pulse drives wake with 6n/ng ~ 1%

 Long (~ 1 ps) driver, 1J + spectrally modulated by wakefield

* Interaction length ~10 cm, confined by plasma waveguide
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Multi-pulse Scheme - Compressor

» Spectrally modulated drive pulse goes through dispersive system, forming pulse train
with peaks separated by plasma period Ty, of the modulator
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Multi-pulse Scheme — Accelerator 21 OXFORD

4°mee, 1

e Pulse train is focused into a plasma waveguide and resonantly drives a wake DNeres = o2 52

* Electrons injection via external injection, resonant downramp or shock injection
(experiment forthcoming) 1.
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Experimental Objectives — Gemini 2022

1. Guide J-scale laser pulse trains in 100 mm long plasma channels
* Required for modulator and accelerator

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
* Demonstrate dependence of wake amplitude on electron density and pulse spacing
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Experimental Setup

1. Guide J-scale laser pulse trains in 100 mm long plasma
channels

* Required for modulator and accelerator

2. Demonstrate resonant wakefield excitation by channel- | ~ N
guided pulse trains >

* Demonstrate dependence of wake amplitude on electron density
and pulse spacing

Channel-forming
beam
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Mock-up Pulse Train

* Chirp Gemini pulse=30 fs - 1ps,5)
* Interfere two copies in Michelson interferometer, producing pulse train

* Train measured by large time window SSA

T
Chlrped Pulse 5XMICh /2

pulse train <>
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Mock-up Pulse Train OXFORD

* Higher order phase smears
peaks, use Dazzler to
compensate

* TOD retrieved using
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 Jet/Cell hybrid with adjustable
length

* Longitudinal gas profile o _
measured by plasma Longitudinal gas pressure profile

fluorescence method and 2.07 I L
confirmed by fluid simulations ; Simulation
] Measurement; y? = 56.7/49
e Measured on-shot with 15} ]

pressure transducer
* Density fluctuations >5% RMS
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HOFI Plasma Waveguide ) OXFOR

e Short channel forming pulse is focused by axicon and ionizes a plasma column
e Plasma column expands over 3 ns, driving a shock wave of plasma and neutral gas

* Pulse train is focused into plasma and the leading edge ionizes the neutral shock, forming

: Plasma
a waveguide channel
* Guided spot imaged by spherical mirror p ! ~
Axicon lens b N |
) Expanding
cylindrical blast
wave
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Optical guiding of pulse trains
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Transmission
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e Changing cell length separates
coupling loss and attenuation

 Attenuation length (T(Z) =

Ty exp (— L)) for highest points is
Latt
124 mm
* To~30%, with losses from mode
overlap
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Laser parameters:
1. Pulse train: ~10 pulses, 200 fs spacing, 2.5 J on-target

k2. Channel-forming: 40 fs, 100 mJ on-target
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Comparison with Smooth Pulse

e Similar transmission to earlier
experiments with smooth pulse
(Picksley et. Al (2020)) despite 1/8

intensity —50
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Experimental Objectives — Gemini 2022

1. Guide J-scale laser pulse trains in 100 mm long plasma channels
* Required for modulator and accelerator

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
* Wakefield excitation was measured by observing redshift of the drive beam
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Redshift of Transmitted Spectra ) OXTORD
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Redshift of Transmitted Spectra
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Redshift of transmitted spectra
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Redshift of transmitted spectra
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Density Resonance of Redshift

Pulse train, Tt = 170 fs

6T =170fs = ng .o = 4.3 X 10 cm™

HH Average § One-shot bin

' If
i ' &)}i :
s i 1 —t;l
© 4 _ o i
=, /
- F S
- , §()\) _'i Fluid caIcs._‘
00 03 06J} 8 ===08J
o | [ 254
] ] ] L L ] L ] L L ] L L
820 860 900 0.0 0.3 0.6
A [nm] R

—_—

Intensity [A.U.]
o
[€)}

-1000 0 1000
Time [fs]

Expected resonant
density

R= z:A>)Lthresh f(A)

18/09/2023



UNIVERSITY OF

Smooth pulse — No Resonance
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Simulation Results of Density Resonance

Single shot I

* Redshifts were compared to ’/ J Average Simulation assuming perfect
expected redshifts from 2D ~ Individual data :
cylindrical fluid calculations, 6 channel coupling
benchmarked against PIC
simulations S

Experimentally measured red-shift

were reduced since: 4

* Lowest order mode overlap ~ 2
80% 3F

e Spatial jitter of drive beam at f
channel entrance ~ 31 microns 21

* Density ramps at start and end Simulation assuming 800 m)J
of gas target 1

effective energy in pulse train

Suggests wakefield
amplitude = 3-10 GV/m
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Dependence of Resonance on Pulse Spacing

70 mm propagation
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Experimental Objectives — Gemini 2022

1. Guide J-scale laser pulse trains in 100 mm long plasma channels
e Guided 2.5 J, 10 pulse train over 110 mm

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains

* Observed density-dependent redshifts in the drive spectrum, indicating wakefields were
resonantly excited by channel-guided pulse trains

* Resonance at expected density and consistent with RZ-fluid simulations
» Simulations suggest acceleration gradient of 3-10 GeV/m
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Experimental Objectives — Gemini 2022

1. Guide J-scale laser pulse trains in 100 mm long plasma channels
e Guided 2.5 J, 10 pulse train over 110 mm

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains

* Observed density-dependent redshifts in the drive spectrum, indicating wakefields were
resonantly excited by channel-guided pulse trains

* Resonance at expected density and consistent with RZ-fluid simulations
» Simulations suggest acceleration gradient of 3-10 GeV/m

3. Upcoming: Modulation experiments with true ps pulse at CALA
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