Observation of resonant wakefield excitation by pulse trains guided in long plasma channels

Simon Hooker, Roman Walczak, Emily Archer, James Chappell, James Cowley, <u>Linus Feder</u>, Oscar Jakobsson, Alex Picksley, Aimee Ross, Johannes van de Wetering, Wei-Ting Wang

John Adams Institute for Accelerator Science, University of Oxford

Nicolas Bourgeois

Rutherford Appleton Laboratory, Harwell

Laura Corner, Harry Jones, Lewis Reid

Cockcroft Institute, University of Liverpool

This work was supported by the UK Science and Technology Facilities Council (STFC UK) [Grant Nos ST/S505833/1, ST/R505006/1, ST/V001655/1, ST/V001612/1]; the Engineering and Physical Sciences Research Council [Grant Nos EP/R513295/1, EP/V006797/1]; the UK Central Laser Facility; and the Ken & Veronica Tregidgo Scholarship, Wolfson College, Oxford. This material is based upon work supported by the Air Force Office of Scientific Research under Grant No. FA9550-18-1-7005.

Challenges of High Repetition Rate

- High repetition rate lasers not available at PW-level required for GeV electron acceleration
- Joule + lasers available at kHz repetition rate based on thin disk technology, but with ps pulse lengths
 - 1.1 J @ 4.5 ps CSU
 - Trumpf/Cala 1 J @ \leq 600 fs
 - Multipass broadening 100 mJ @ 40 fs
- Solution: Convert long pulse into pulse train to resonantly drive wake at lower peak intensity

Multi-pulse Scheme - Modulator

- Short (<100 fs) seed, 10s mJ seed pulse drives wake with $\delta n/n_0 \sim 1\%$
- Long (~ 1 ps) driver, 1 J + spectrally modulated by wakefield
- Interaction length $\sim 10 \ cm$, confined by plasma waveguide

UNIVERSITY OF

• Spectrally modulated drive pulse goes through dispersive system, forming pulse train with peaks separated by plasma period T_{p0} of the modulator

UNIVERSITY OF

Multi-pulse Scheme – Accelerator

- $4\pi^2 m_e \epsilon_0$ 1 • Pulse train is focused into a plasma waveguide and resonantly drives a wake $n_{e,res} =$
- Electrons injection via external injection, resonant downramp or shock injection (experiment forthcoming)

UNIVERSITY OF

 $\overline{\delta \tau^2}$

Experimental Objectives – Gemini 2022

- 1. Guide J-scale laser pulse trains in 100 mm long plasma channels
 - Required for modulator and accelerator
- 2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
 - Demonstrate dependence of wake amplitude on electron density and pulse spacing

18/09/2023

Experimental Setup

- 1. Guide J-scale laser pulse trains in 100 mm long plasma channels
 - Required for modulator and accelerator
- 2. Demonstrate resonant wakefield excitation by channelguided pulse trains
 - Demonstrate dependence of wake amplitude on electron density and pulse spacing

To spectrometers and mode-imaging setup

Mock-up Pulse Train

- Chirp Gemini pulse $30 fs \rightarrow 1 ps$, 5 J
- Interfere two copies in Michelson interferometer, producing pulse train
- Train measured by large time window SSA

Mock-up Pulse Train

- Higher order phase smears peaks, use Dazzler to compensate
- TOD retrieved using autocorrelation using numerical optimization constrained by measured $\phi^{(2)}$ and Michelson spacing
- Uniformity of pulse train spacing ~0.9

 $\tau = (203 \pm 1)$ fs

Target

- Jet/Cell hybrid with adjustable length
- Longitudinal gas profile measured by plasma fluorescence method and confirmed by fluid simulations
- Measured on-shot with pressure transducer
- Density fluctuations >5% RMS

HOFI Plasma Waveguide

• Short channel forming pulse is focused by axicon and ionizes a plasma column

Axicon lens

- Plasma column expands over 3 ns, driving a shock wave of plasma and neutral gas
- Pulse train is focused into plasma and the leading edge ionizes the neutral shock, forming a waveguide

0

0

0

6

0

0

• Guided spot imaged by spherical mirror

Channel-forming laser pulse

Pulse train - 2.5 J on

target, **f/40** focusing

 $(\sim 40 \text{ fs}, \sim 100 \text{ mJ})$

Plasma

Channel

Expanding

cylindrical blast

wave

Optical guiding of pulse trains

Transmission

- Changing cell length separates coupling loss and attenuation
- Attenuation length $\left(T(z) = T_0 \exp\left(-\frac{z}{L_{att}}\right)\right)$ for highest points is 124 mm
- $T_0 \sim 30\%$, with losses from mode overlap

Laser parameters:

- 1. Pulse train: ~10 pulses, 200 fs spacing, 2.5 J on-target
- 2. Channel-forming: 40 fs, 100 mJ on-target

Comparison with Smooth Pulse

- Similar transmission to earlier experiments with smooth pulse (Picksley et. Al (2020)) despite 1/8 intensity
- Pic simulations confirm conditioning by first few pulses in train, fully conditioned for most pulses

(Poster: Stability of the Plasma-Modulated Plasma Accelerator (P-MoPA), Johannes Van de Wetering Paper: PHYSICAL REVIEW E 108, 015204 (2023))

Experimental Objectives – Gemini 2022

- 1. Guide J-scale laser pulse trains in 100 mm long plasma channels
 - Required for modulator and accelerator
- 2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
 - Wakefield excitation was measured by observing redshift of the drive beam

18/09/2023

Smooth pulse – No Resonance

Simulation Results of Density Resonance

- Redshifts were compared to expected redshifts from 2D cylindrical fluid calculations, benchmarked against PIC simulations
- Experimentally measured red-shift were reduced since:
- Lowest order mode overlap ~ 80%
- Spatial jitter of drive beam at channel entrance ~ 31 microns
- Density ramps at start and end of gas target

Dependence of Resonance on Pulse Spacing

70 mm propagation

UNIVERSITY OF

Experimental Objectives – Gemini 2022

- 1. Guide J-scale laser pulse trains in 100 mm long plasma channels
 - Guided 2.5 J, 10 pulse train over 110 mm
- 2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
 - Observed density-dependent redshifts in the drive spectrum, indicating wakefields were resonantly excited by channel-guided pulse trains
 - Resonance at expected density and consistent with RZ-fluid simulations
 - Simulations suggest acceleration gradient of 3-10 GeV/m

Experimental Objectives – Gemini 2022

- 1. Guide J-scale laser pulse trains in 100 mm long plasma channels
 - Guided 2.5 J, 10 pulse train over 110 mm
- 2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
 - Observed density-dependent redshifts in the drive spectrum, indicating wakefields were resonantly excited by channel-guided pulse trains
 - Resonance at expected density and consistent with RZ-fluid simulations
 - Simulations suggest acceleration gradient of 3-10 GeV/m
- 3. Upcoming: Modulation experiments with true ps pulse at CALA