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• High repetition rate lasers not available at PW-level required for GeV electron 
acceleration

• Joule + lasers available at kHz repetition rate based on thin disk technology, but with ps
pulse lengths
• 1.1 J @ 4.5 ps - CSU

• Trumpf/Cala 1 J @ ≤600 fs
• Multipass broadening – 100 mJ @ 40 fs

• Solution: Convert long pulse into pulse train to resonantly drive wake at lower peak 
intensity
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Challenges of High Repetition Rate 



18/09/2023

Multi-pulse Scheme - Modulator
• Short (<100 fs) seed, 10s mJ seed pulse drives wake with 𝛿𝑛/𝑛0 ~ 1%

• Long (~ 1 ps) driver, 1 J +  spectrally modulated by wakefield

• Interaction length ~10 𝑐𝑚, confined by plasma waveguide 
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Multi-pulse Scheme - Compressor

• Spectrally modulated drive pulse goes through dispersive system, forming pulse train 
with peaks separated by plasma period Τ𝑝0 of the modulator
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Multi-pulse Scheme – Accelerator 

• Pulse train is focused into a plasma waveguide and resonantly drives a wake

• Electrons injection via external injection, resonant downramp or shock injection 
(experiment forthcoming)
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1. Guide J-scale laser pulse trains in 100 mm long plasma channels
• Required for modulator and accelerator

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
• Demonstrate dependence of wake amplitude on electron density and pulse spacing
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Experimental Objectives – Gemini 2022



1. Guide J-scale laser pulse trains in 100 mm long plasma 
channels
• Required for modulator and accelerator

2. Demonstrate resonant wakefield excitation by channel-
guided pulse trains
• Demonstrate dependence of wake amplitude on electron density 

and pulse spacing
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Experimental Setup
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Mock-up Pulse Train

• Chirp Gemini pulse – 30 𝑓𝑠 → 1 𝑝𝑠, 5 J

• Interfere two copies in Michelson interferometer, producing pulse train

• Train measured by large time window SSA
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Mock-up Pulse Train

• Higher order phase smears 
peaks, use Dazzler to 
compensate

• TOD retrieved using 
autocorrelation using numerical 
optimization constrained by 
measured 𝜙(2) and Michelson 
spacing

• Uniformity of pulse train spacing 
~0.9
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Target

• Jet/Cell hybrid with adjustable 
length

• Longitudinal gas profile 
measured by plasma 
fluorescence method and 
confirmed by fluid simulations

• Measured on-shot with 
pressure transducer

• Density fluctuations >5% RMS
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HOFI Plasma Waveguide

Expanding 
cylindrical blast 

wave

Plasma 
Channel

Pulse train - 2.5 J on 
target, f/40 focusing

Channel-forming laser pulse 
(~40 fs, ~100 mJ)

Axicon lens

• Short channel forming pulse is focused by axicon and ionizes a plasma column

• Plasma column expands over 3 ns, driving a shock wave of plasma and neutral gas

• Pulse train is focused into plasma and the leading edge ionizes the neutral shock, forming 
a waveguide

• Guided spot imaged by spherical mirror
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Optical guiding of pulse trains

Laser parameters:
1. Pulse train: ~10 pulses, 170 fs spacing, 2.5 J on-target
2. Channel-forming: 40 fs, 100 mJ on-target

• J-scale pulses guided in 
110 mm plasma 
channel (~17 Rayleigh 
ranges)

• Input spot 71 % overlap 
with lowest order 
mode of the output 
spot

• Matched spot size 
decreased at low 
density
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Transmission

• Changing cell length separates 
coupling loss and attenuation

• Attenuation length ቀ

ቁ

𝑇 𝑧 =

𝑇0 exp −
𝑧

𝐿𝑎𝑡𝑡
 for highest points is 

124 mm 

• 𝑇0~30%, with losses from mode 
overlap

Laser parameters:
1. Pulse train: ~10 pulses, 200 fs spacing, 2.5 J on-target
2. Channel-forming: 40 fs, 100 mJ on-target
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Comparison with Smooth Pulse

• Similar transmission to earlier 
experiments with smooth pulse 
(Picksley et. Al (2020)) despite 1/8 
intensity

• Pic simulations confirm conditioning 
by first few pulses in train, fully 
conditioned for most pulses

(Poster: Stability of the Plasma-Modulated Plasma 
Accelerator (P-MoPA), Johannes Van de Wetering
Paper: PHYSICAL REVIEW E 108, 015204 (2023))



1. Guide J-scale laser pulse trains in 100 mm long plasma channels
• Required for modulator and accelerator

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
• Wakefield excitation was measured by observing redshift of the drive beam
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Experimental Objectives – Gemini 2022
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Redshift of Transmitted Spectra
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Redshift of Transmitted Spectra

Off-resonance
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Redshift of transmitted spectra

Off-resonance

Near resonance
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Pulse train

Smooth long 
pulse

Off-resonance

Near resonance

Smooth pulse: 1 ps, no modulation, 2.7 J on-target 

Redshift of transmitted spectra
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Density Resonance of Redshift

Expected resonant 
density

𝛿τ = 170 fs ne,res = 4.3 × 1017 cm−3

𝐑 = σ𝜆>𝜆thresh
𝑓(𝜆)
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Smooth pulse – No Resonance

Self-modulation for 

ne ≳ 5 × 1017 cm−3

Smooth pulse: 1 ps, no 
modulation, 2.7 J on-target 
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Simulation Results of Density Resonance

Aimee Ross, HPL 2022 – Resonant wakefield excitation in long plasma channels 

Simulation assuming 800 mJ 
effective energy in pulse train

Suggests wakefield 
amplitude = 3-10 GV/m

Simulation assuming perfect 
channel coupling

• Redshifts were compared to 
expected redshifts from 2D 
cylindrical fluid calculations, 
benchmarked against PIC 
simulations

Experimentally measured red-shift 
were reduced since:
• Lowest order mode overlap ∼ 

80%
• Spatial jitter of drive beam at 

channel entrance ∼ 31 microns
• Density ramps at start and end 

of gas target



18/09/2023

Dependence of Resonance on Pulse Spacing

70 mm propagation

200 fs pulse spacing170 fs pulse spacing

Expected 
resonant density

Expected 
resonant density



1. Guide J-scale laser pulse trains in 100 mm long plasma channels
• Guided 2.5 J, 10 pulse train over 110 mm

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
• Observed density-dependent redshifts in the drive spectrum, indicating wakefields were 

resonantly excited by channel-guided pulse trains

• Resonance at expected density and consistent with RZ-fluid simulations

• Simulations suggest acceleration gradient of 3-10 GeV/m 
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Experimental Objectives – Gemini 2022



1. Guide J-scale laser pulse trains in 100 mm long plasma channels
• Guided 2.5 J, 10 pulse train over 110 mm

2. Demonstrate resonant wakefield excitation by channel-guided pulse trains
• Observed density-dependent redshifts in the drive spectrum, indicating wakefields were 

resonantly excited by channel-guided pulse trains

• Resonance at expected density and consistent with RZ-fluid simulations

• Simulations suggest acceleration gradient of 3-10 GeV/m 

3. Upcoming: Modulation experiments with true ps pulse at CALA
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Experimental Objectives – Gemini 2022
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