European Advanced Accelerator Workshop 2023 Isola d'Elba, Italy

Enhanced stability of a Free-Electron Laser driven by a plasma beam-driven accelerator and seeded by an external laser beam

Michele Opromolla (INFN LNF)

michele.opromolla@lnf.infn.it

On behalf of the SPARC_LAB collaboration

SPARC_LAB facility

Plasma acceleration experiments

Two-bunches configuration produced directly at the cathode with laser-comb technique with a time-separation of approximately 1 ps

FEL experiments

UNDs + 5 short EM quads: Vertical focusing Horizontal matching

Quads triplet: 6 m matching stage $\beta_T \cong mm$ ->m

PMQs triplet: Catches the beam Removes high divergence

FEL simulations (3D time-dependent)

Set of 100 independent runs with GENESIS 1.3

- beam microscopic distribution randomly changed shot-to-shot
- jitters of beam macroscopic parameters included (10% on bunch charge, length, energy, energy spread and emittance)

Demonstration of high-quality PWFA acceleration able to drive a FEL

- ❖ Witness is completely characterized
- ❖ Jitter online monitored with Electro-Optical Sampling (EOS) diagnostics
- ❖ Imaging spectrometer with iCCD used for detection

$$
\sim
$$
200 MV/m @ 1.6 × 10¹⁵ cm⁻³ plasma density

$$
\begin{array}{cccc}\n & \text{E (MeV)} & 94 & \text{Q (pC)} & 20 \\
\text{Witness } \text{@} & \sigma_E \text{ (MeV)} & 0.3 & \text{t (fs)} & 30 \\
\epsilon_{x,y} \text{ (µm)} & 2.7,1.3 & \sigma_{x,y} \text{ (µm)} & 200\n\end{array}
$$

15 m FEL beamline
\n•
$$
L_u
$$
 = 2.5 m (77 periods)
\n• λ_u = 2.8 cm

$$
\bullet K = 1.4
$$

Photocathode Laser \rightarrow **Ti:Sa delivering** \approx **100 fs long pulses @10 Hz**

- ➢ tens of mJ converted to UV and sent on the photo-cathode to generate the driver and witness bunches;
- ➢ low energy (hundreds of nJ) line used both to drive the EOS diagnostics and as **seed laser**.
	- ✓ Naturally synchronized \checkmark Tunable energy (~10 nJ used)

Laser propagation and 1% laser energy jitters included in the simulations

Seeded FEL driven by PWFA - seeding stage

- A small magnetic chicane (4 dipoles in 5.75 m, R_{56} ~-10 μ m) displaces the beam (~2 mm kick)
- A 15 cm glass material stretches the pulse inducing a group-delay-dispersion of about 187 fs^2/mm
- Two motorized in-vacuum high-reflective mirrors for laser injection
- **Ouadrupoles** Chicane spectrui
- A motorized delay-line tunes the laser-electron delay.
- \checkmark Duration increased from \sim 100 fs to 600 fs (fwhm)
- \checkmark Focused at the entrance of 1st undulator

Same detection setup used ND filter @ 6th photodiode was changed for larger intensity signals

Seeded FEL driven by PWFA - lasing condition

UNDs tuned for FEL radiation @827 nm \rightarrow wavelength shift

FEL energy gain with varying seed laser wavelength

- The red dashed line shows the Gaussian fit of the theoretical data centered @826.6 nm;
- The green circle shows the prediction of the energy gain of the FEL seeded with our experimental parameters.

Seeded FEL driven by PWFA - performances

➢ FEL radiation output largely stabilized by the seed laser

\checkmark Centered @827 \pm 7 nm with 4.5 ± 1.2 nm BW

SPARC LAB

Seeded vs SASE FEL driven by PWFA

Seeded vs SASE FEL driven by PWFA - exp. gain

Gain length $L_q = 1.03 \pm 0.1$ m

- **The two proof-of-principle FEL experiments done @SPARC_LAB show that PWFA is a viable solution for FELs**
- \checkmark Theoretical analysis and experimental results indicate that an off-resonant laser beam with respect to the FEL resonance can seed the FEL process
- \checkmark The amplified and stabilized FEL radiation is centered at the undulator resonance due to the ultra-short bunch length
- \checkmark The FEL pulses' stability could only be further improved by reducing electron beam fluctuations related to the plasma formation and acceleration process
- **Fundamental steps toward the future EuPRAXIA plasma-based facility for useroriented applications**

Thank you for your kind attention!

M. Opromolla (INFN-LNF)

[michele.opromolla@lnf.infn.it](mailto:riccardo.pompili@lnf.infn.it)

On behalf of the SPARC_LAB collaboration

Laboratori Nazionali di Frascati

Standard vs Plasma accelerators

Size of Injector + Accelerator (m)

From R. Assmann (3rd EAAC Workshop, 2017)

Velocity bunching Velocity bunchng

Alternative technique to magnetic compression in chicanes / doglegs.

It simultaneously accelerate and compress the electron bunches, making the photo-injector very compact.

Laser-comb technique Laser-comb technique

Plasma experience @SPARC

Activities with the high-brightness photo-injector

Plasma characterization

Focusing with activeplasma lenses

Longitudinal phase-space manipulation

Pompili, R., et al., Phys. Rev. Lett. 121.17 (2018): 174801. Pompili, R., et al., Applied Physics Letters 110.10 (2017): 104101. **V. Shpakov et al. Phys. Rev. Lett. 122, 114801 (2019)**

D European Advanced Accelerator Workshop 2023 M. Opromolla M. Opromolla

First emittance measurements in PWFA

PWFA characterization completed by measuring the witness emittance

Measurement of its normalized emittance through quadrupole scan technique We found emittance increase from 2.7 um to 3.7 um (rms) during acceleration

Shpakov, V., et al. "First emittance measurement of the beam-driven plasma wakefield accelerated electron beam." Physical Review Accelerators and Beams 24.5 (2021): 051301.

Jitters and stabilization

Two main sources of jitters

- Driver witness separation:
- Plasma density fluctuations limited by RF sync. in a beamdriven plasma

To reduce the 2nd source, we preionize the Hydrogen gas with an external laser (~100 µJ, 2mm diameter)

- 1. PMQs triplet catches the beam and removes the high divergence
- 2. The 6 m FODO (6 e.m. quads) stage sets the required Twiss parameters to optimize the FEL performance

 $\beta_T \cong mm$ @ plasma exit $\Rightarrow \beta_T \cong m$ @ FEL entrance

- 3. Low energy beams \rightarrow UNDs are transport elements (vertical focusing)
- 4. 5 short e.m. quads allow horizontal matching, ensuring optimal transort

SASE vs Seeded FEL driven by PWFA

Clear signals, reproducible day by day

SPARC

LAB.

EuPRAXIA design study EuPRAXIA design study

EuPRAXIA collaboration foresees the realization of two plasma-based FEL facilities in the **X-rays range driven by GeV energy beams accelerated by a PWFA stage**.

EuPRAXIA@SPARC_LAB design study

