High average gradient in a laser-gated multistage plasma wakefield accelerator

A. Knetsch¹, I.A. Andriyash², M. Gilljohann², O. Kononenko², A. Matheron²,

Y. Mankovska², P. San Miguel Claveria³, V. Zakharova², E. Adli⁴, and S. Corde²

¹ SLAC National Accelerator Laboratory

² LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris

³ Instituto Superior Técnico, Lisboa

⁴ Department of physics, University of Oslo, N-0316 Oslo, Norway

21th September 2023 – EAAC Elba

Stanford University

Single-stage PWFAs are continuously improving

130 GV/m

FACET-I: Measurement of high accelerating gradient in Ar Source: S. Corde, et al. *Nature Comm.* (2015)

- GV/m operation
- Quality preservation (emittance, energy spread)
- High energy transfer efficiency

1.28 GV/m

FLASHForward: optimized for high efficiency and energy-spread conservation Source: CA Lindstrøm, et al. *Phys. Rev. Lett.* (2021)

The logical next step: More PWFAs

Source: B. Foster et al. (2023) → Plenary C. Lindstrøm Fr. 11 AM

How do we reach beyond TeV?

Single-stage PWFAs don't shrink accelerators (by a lot)

Single-stage PWFAs don't shrink accelerators (by a lot)

Many-stage limit

One-stage limit

น้องการสังการแห่งการสังการเหลือการเหลือการเหลือการเหลือการเหลือการเหลือการเหลือการเหลือการเหลือการเหลือการเหลื

Laser-gated staging

Depleted Drive beam

- Ultrashort ionization front separates plasma-dominated and magnet-dominated lattice
- In and outcoupling of driver-beams in temporal domain
- Small spacing between driver beams minimizes intra-stage path length

Laser-gated staging

- Ultrashort ionization front separates plasma-dominated and magnet-dominated lattice
- In and outcoupling of driver-beams in temporal domain
- Small spacing between driver beams minimizes intra-stage path length
- Trailing-beam transport with beam-driven plasma lens
- SLAC A. Knetsch, et al. arXiv preprint arXiv:2210.02263 (2022), accepted for PRL

Introduction into different orbits: The beam reservoir

- Beam energy 10 GeV
- Charge: 700 pC
- Bunch length: 22.7 um

FODO Quadrupoles:

- Magnetic field strength: 146 T/m
- Length: 100 mm
 Chicane:
- Magnetic field: 1.27 T, 1.73 T

0.55 m

Dipole length:

Introduction into different orbits: The plasma stages

 Set plasma entrance at waist location

 Long density ramps around PWFA stages

Introduction into different orbits: Drive-beams

 Depleted drive -beams defocused at the PWFA exit

• Lens focusing scaling law:

Introduction into different orbits: The trailing beam

Trailing beam:

- Initial energy: 100 GeV
- Bunch length: 4 um
- Charge: 50 pC
- Trailing beam guided through PWFA
- Ramps reduce divergence
- Lens refocuses trailing beam

 $f = \frac{2\gamma}{k_{\rm p}^2 L_{\rm lens}}$

Development of longitudinal phase spaces

- Trailing beam gains 15.05 GeV of energy per PWFA stage
- Driver coupled out to the back of the bunch train after PWFA or plasma lens

Average gradient

- Trailing beam gains 15.05 GeV of energy per PWFA stage
- Driver coupled out to the back of the bunch train after PWFA or plasma lens

- Average gradient 2 PWFAs: 1.64 GV/m
- Average gradient for ILC-like pre-accelerator: **1.1 GV/m**
- Average gradient for 100 MV/m pre-accelerator: 1.4 GV/m

Efficiency

- Trailing beam gains 15.05 GeV of energy per PWFA stage
- Driver coupled out to the back of the bunch train after PWFA or plasma lens

Energy-transfer efficiency 1 PWFA:

19.5 %

Energy-transfer efficiency pre-accelerator to trailing beam

10.7 %

Considering plasma-lens driver

5.4

Simulations not optimized for efficiency

Efficiency – An optimistic projection

- Trailing beam gains 15.05 GeV of energy per PWFA stage
- Driver coupled out to the back of the bunch train after PWFA or plasma lens

Energy-transfer efficiency 1 PWFA:

• Increase trailing-beam charge to 100 pC

19.5 % → ~ 40 %

Energy-transfer efficiency pre-accelerator to trailing beam

10.7 % **→** ~ 21 %

- Considering plasma-lens driver
 - Decrease charge of plasma-lens driver factor 10

5.4 % → **19.6 %**

Coherent synchrotron radiation

Driver beams **Trailing beam** 0.1 10 GeV reservoir beams 2.5 GeV reservoir beams 0.9 0.09 90 0.08 80 bunch length $\sigma_{\rm z}~(\mu{\rm m})$ 0.07 70 0.06 🛞 60 0.05 H 0.04 50 Simulated case 0.03 40 0.2 0.02 30 0.1 0.01 20 20 40 60 80 100 120 140 100 200 300 400 500 600 0 z (m) z (m)

- Drive-beam bunch lengthening much more resilient at 10 GeV then at 2.5 GeV
- Energy spread increase of trailing beam tapers off

Incoherent synchrotron radiation

- ICS acceptable for energies up to 1 TeV
- At higher energies, chicane design needs adjustment at cost of stage length
- This comes at cost of average gradient

Conclusion

- Proposed staging method combines two aspects unique to PWFA
 - Laser-gated PWFA
 - Temporal drive-beam coupling
- Small interstage distances
- Average gradient over 2 stages: 1.64 GeV/m
- Scalable to 1 TeV with an average gradient of
 1.1 GeV/m
- Many open questions, but so far we found no deal-breaker

Thank you for your attention !