Laboratory Astrophysics and Plasma Wakefield Acceleration:

Experimental Study of Magnetic Field Generation by Current Filamentation Instability of a Relativistic Proton Bunch in Plasma

L. Verra, C. Amoedo, N. Torrado, A. Clairembaud, J. Mezger, F. Pannell, J. Pucek, N. van Gils, M. Bergamaschi, G. Zevi Della Porta, N. Lopes, A. Sublet, M. Turner, E. Gschwendtner, P. Muggli (and the AWAKE Collaboration)

EAAC 2023 – WG1

20.09.2023

livio.verra@Inf.infn.it

Plasma preserves the current neutrality

 \rightarrow return current of plasma electrons to compensate for the bunch current

Plasma preserves the current neutrality

 \rightarrow return current of plasma electrons to compensate for the bunch current

If the bunch is wider than the plasma skin depth $\delta = \frac{c}{\omega_{pe}}$

ightarrow the return current flows within the bunch

Plasma preserves the current neutrality

 \rightarrow return current of plasma electrons to compensate for the bunch current

- Currents generate magnetic fields
- Opposite currents repel each other
- Perturbation or anisotropy in the transverse distribution causes unbalanced B field
 - ightarrow instability
 - ightarrow growth of current filaments ightarrow self-pinching
 - ightarrow growth of B field and magnetic energy

If the bunch is wider than the plasma skin depth $\delta = \frac{c}{\omega_{pe}}$

ightarrow the return current flows within the bunch

Roswell Lee and Martin Lampe, Phys. Rev. Lett. 31, 1390 (1973)

(simulations of electron beam streaming through plasma)

- Currents generate magnetic fields
- Opposite currents repel each other
- Perturbation or anisotropy in the transverse distribution causes unbalanced B field
 - \rightarrow instability

AI

- \rightarrow growth of current filaments \rightarrow self-pinching
- ightarrow growth of B field and magnetic energy

Roswell Lee and Martin Lampe, Phys. Rev. Lett. 31, 1390 (1973)

CFI in space

Plausible candidate for:

- magnetization of astrophysical media [J. Niemiec et al., The Astrophysical Journal **684**, 1174 (2008)]
- magnetic fields enhancement

→ long duration afterglow of gamma-ray bursts [M. V. Medvedev et al., The Astrophysical Journal 666, 339 (2007)] [M. V. Medvedev et al., Astrophys. Space Sci. 322, 147–150 (2009)]

ightarrow collisionless shocks

[M. V. Medvedev and A. Loeb, The Astrophysical Journal 526, 697 (1999)]

Also important for hot electron propagation in inertial confinement fusion targets:

[M. Tabak et al., Physics of Plasmas 1, 1626 (1994)]

Motivation for Experiments

1) Plasma Wakefield Acceleration

CFI splits driver and/or witness bunch in multiple filaments

 \rightarrow structure of the wakefields is spoiled \rightarrow no high-quality acceleration

 \rightarrow Define a maximum ratio $\frac{\sigma_r}{s}$ \rightarrow Maximum σ_r , given n_{pe} , to effectively drive wakefields a) 20 mrad b) c) d). Beam driven electrons e)

C. M. Huntington et al., Phys. Rev. Lett. 106, 105001 (2011)

M. Tatarakis, et al., Phys. Rev. Lett. 90, 175001 (2003)

PWFA

Motivation for Experiments

1) Plasma Wakefield Acceleration

CFI splits driver and/or witness bunch in multiple filaments

→ structure of the wakefields is spoiled
→ no high-quality acceleration

\rightarrow Define a maximum ratio $\frac{\sigma_r}{s}$

 \rightarrow Maximum σ_r , given n_{pe} , to effectively drive wakefields

2) Laboratory Astrophysics

- CFI generates and amplifies magnetic field
- ➔ fraction of the bunch kinetic energy is converted into magnetic energy
- → Directly show in experiments

(until now, experiments with probe beams)

C. M. Huntington et al., Nature Physics 11, 173–176 (2015)

Chaojie Zhang et al., Phys. Rev. Lett. 125, 255001 (2020)

Experimental Setup

 $\frac{\sigma_r}{\delta} = 0.9 - 3.2$

Experimental Setup

Plasma OFF – no gas

Plasma OFF – no gas

No distinguishable features in the transverse or longitudinal distribution

Magnetic field generation

We calculate the transverse magnetic field generated by each current with Ampère's law
 → the sum of the two contributions provides the overall magnetic field

Conclusions

- We consistently observe CFI of long, relativistic proton bunch when $\frac{\sigma_r}{\delta} > 1.5$
- At the threshold $\frac{\sigma_r}{\delta} = 1.5$, the bunch-plasma system alternates between CFI and SMI
- We show that occurrence of CFI generates magnetic fields
 - the amount of magnetic energy increases with n_{pe}

Thank you for your attention!

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati