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Plasma-wakefield accelerators promise compactness

 Accelerating gradient

 State-of-the-art RF accelerators: 𝒪(100 MV/m)

 Plasma-Wakefield Accelerators: 𝒪 (1-100 GV/m)

 Construction costs can be greatly reduced

 For high-power beam delivering accelerators:

 e.g., hard X-ray FELs and colliders

 Goal: Keep running costs low

 High total energy-transfer

efficiency needed

[1]

International Linear Collider (31 km)

[1] ILC Technical Design Report (2013)

[2] B. Foster et al., New Journal of Physics (2023) (accepted)

[2]

HALHF (~3.3 km)
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Energy-transfer inefficiency could impede PWFA

˃ Efficiency impacts the running costs

˃ E.g., CLIC’s wall-plug-to-main-beam energy-transfer efficiency 𝜂WP = 11%* [1]

* no overhead included for cooling, ventilation or network

** with 28 MW of CLIC; 200 days; 45 €/MWh

[1] M. Aicheler et al., CLIC Conceptual Design Report (2012)

For machines delivering high beam-power
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Energy-transfer inefficiency could impede PWFA

˃ Efficiency impacts the running costs

˃ E.g., CLIC’s wall-plug-to-main-beam energy-transfer efficiency 𝜂WP = 11%* [1]

˃ We have to demonstrate at least the same energy-transfer efficiency!

˃ Also important for limitations in cell cooling

* no overhead included for cooling, ventilation or network

** with 28 MW of CLIC; 200 days; 45 €/MWh

[1] M. Aicheler et al., CLIC Conceptual Design Report (2012)

For machines delivering high beam-power
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Driver energy depletion is key component for efficiency

˃ Wall-plug-to-witness efficiency is a product of:

1. Driver production efficiency

 

2. Driver-to-plasma energy transfer efficiency

(i.e., driver depletion)

3. Plasma-to-witness energy transfer efficiency 

 

 

This talk

✓ (beam driven)

✓

[1]

1

2

3

[1] Courtesy of A. Martinez de la Ossa and R. D’Arcy

[2] M. Aicheler et al., CLIC Conceptual Design Report (2012)

[3] S. M. Hooker et al., J. Phys. B: At. Mol. Opt. Phys. 47, 234003 (2014)

[4] M. Litos et al., Nature 515, 92-95 (2014)

[5] C. A. Lindstrøm et al., Phys. Rev. Lett. 126, 014801 (2021)

[6] C. A. Lindstrøm et al., to be published (2022)

CLIC: [2] η = 55 % (excluding facility power)

Ti:Sapphire laser: [3] η < 1 %

[4]: η = 30 %

[5]: η = 42 %

[6]: η = 22 % – preserving beam quality
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Electron reacceleration is the limit of depletion
HiPACE++ simulations show reacceleration of energy depleted electrons

195-mm long plasma cell

Photo: C. A. Lindstrøm

HiPACE++, S. Diederichs et al., CPC 278, 108421 (2022)

Plenary talk

Wednesday 09:00

F. Peña

Beam loading
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Electron re-acceleration measured for the first time

Re-accelerated

electrons

Energy depleted

electrons

More depletion

˃ Electrons decelerate to 2% of their initial energy

˃ They are subsequently re-accelerated
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Plasma light provides an insight on energy deposition

˃ Plasma emits light during 

recombination

˃ The more energy is deposited by the 

beam into the plasma, the more light is 

emitted [1, 2]

˃ Can be used to estimate energy 

extraction efficiency

[1] E. Öz et al., AIP Conference Proceedings 737, 708 (2004)

[2] L. Boulton et al., in review (2022)

[1]

Parallel talk: WG1

Thursday 18:05

L. Boulton
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Plasma light shows electron re-acceleration

˃ Drop in light-emission intensity 

from:

˃ Less energy deposition

˃ More energy extraction

˃ Can identify the longitudinal 

position where re-acceleration 

starts

˃ Deceleration over 115 mm 

(4.3 GV/m)

˃ Acceleration over 80 mm 

(2.3 GV/m)
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Drop

Entry

Exit
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Spectrum reconstruction is required for accurate 
measurement

˃ Imaging energy scan required to reconstruct the 

'true' energy spectrum of the beam to counteract 

charge loss due to under/overfocusing

˃ Reconstruction only possible with high stability

Electron beam

Focusing optic

Beam pipe

30 MeV

500 MeV
Plasma cell
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Reconstructed spectra don’t account for all charge

61% charge loss
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Driver depletion uncertainty dominated by charge loss

58%

61% charge loss
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Charge loss is downstream of the plasma

˃ Charge is not lost in the plasma but in transport to the 

diagnostic

˃ Predominantly at lower energies

˃ Lower-energy electrons have increased divergence from:

˃ Larger geometric emittance

˃ Smaller matched beta function

˃ Norm. emittance growth from non-linear focusing fields 

where the blowout forms
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Charge loss can be predicted for all densities

˃ Charge loss is

˃ Dependent on energy

˃ Approximately independent on plasma density

˃ Can construct a model to predict charge loss along the 

energy spectrum

˃ Average rms error of charge-loss model: 2.4%
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Corrected spectrum accounts for more charge

˃ Charge loss is

˃ Dependent on energy

˃ Approximately independent on plasma density

˃ Can construct a model to predict charge loss along the 

energy spectrum

˃ Average rms error of charge-loss model: 2.4%
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Corrected spectrum accounts for more charge

˃ Two sources of uncertainty:

˃ Error in measured spectrum

˃ Uncertainty in charge-loss model (on average 2.4%)

˃ We use Monte Carlo, by sampling both within their error

˃ Error bars are central 68-percentile range

˃ As the charge is lost post-plasma, we select the samples 

with full charge reconstruction to estimate the depletion

[1] F. Peña et al., in review (arXiv:2305.09581)

[1]
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Charge-loss model is only valid without re-acceleration

˃ Re-acceleration is a complex process

˃ Charge has a different divergence and is not 

accounted for in the model

˃ Model invalid for shots with re-acceleration

˃ Driver depletion only significant without re-acceleration, 

as it is detrimental to beam quality
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Charge-loss model is only valid without re-acceleration

˃ Re-acceleration is a complex process

˃ Charge has a different divergence and is not 

accounted for in the model

˃ Model invalid for shots with re-acceleration

˃ Driver depletion only significant without re-acceleration, 

as it is detrimental to beam quality
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Drive bunch deposited (59±3)% of its energy

˃ We have sampled the spectra and charge-loss model 

within their error

˃ As the charge is lost post-plasma, we select the samples 

with full charge reconstruction to estimate the depletion

˃ From these, we can estimate the average depletion 

efficiency: (59±3)% at 1.4×1016 cm-3

˃ Using the rms, the uncertainty is ±3%

˃ The expected depletion efficiency increase is ~ 𝑛pe
0.5 [2]

˃ Here, the exponent is ≳ 0.5

[1] F. Peña, et al., in review (arXiv:2305.09581)

[2] W. Lu, et al., Physics of Plasmas 13, 056709 (2006)

[1]
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Conclusions

˃ Electron re-acceleration is a limit of overall energy efficiency

in beam-driven PWFA

˃ Drive-bunch energy depletion estimated to be (59±3)% [1]

˃ Can be increased by optimizing bunch current [2,3]

˃ Simulations suggest ~90% is possible [4,5]

˃ Next step in energy efficiency:

˃ Experimentally combine the independent record-efficiencies

˃ 59% driver-to-wake  42% wake-to-trailing-bunch [6] = 25% driver-to-trailing-bunch

˃ If combined with CLIC’s 55% wall-plug-to-driver efficiency [7]

→ 14% wall-plug-to-trailing-bunch efficiency

       (comparable with conventional accelerators)

[1] F. Peña et al., in review (arXiv:2305.09581)

[2] G. Loisch et al., Phys. Rev. Lett. 121, 064801 (2018)

[3] R. Roussel et al., Phys. Rev. Lett. 124, 044802 (2020)

[4] K. V. Lotov et al., Physics of Plasmas 12, 053105 (2005)

[5] Q. Su et al., Physics of Plasmas 30, 053108 (2023) 

[6] C. A. Lindstrøm et al., Phys. Rev. Lett. 126 , 014801 (2021)

[7] M. Aicheler et al., CLIC Conceptual Design Report (2012)
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