Driver energy depletion

Energy Depletion and Re-Acceleration of Driver Electrons

Felipe Peña, C. A. Lindstrøm, J. Beinortaitė, J. Björklund Svensson, L. Boulton, S. Diederichs, B. Foster, J. M. Garland, P. González Caminal, G. Loisch, S. Schröder, M. Thévenet, S. Wesch, J. C. Wood, J. Osterhoff, and R. D'Arcy

Plasma-wakefield accelerators promise compactness

- > Accelerating gradient
 - State-of-the-art RF accelerators: O(100 MV/m)
 - Plasma-Wakefield Accelerators: O (1-100 GV/m)
- > Construction costs can be greatly reduced
- > For high-power beam delivering accelerators:
 - > e.g., hard X-ray FELs and colliders
 - > Goal: Keep running costs low
 - High total energy-transfer efficiency needed

Energy-transfer inefficiency could impede PWFA

For machines delivering high beam-power

- Efficiency impacts the running costs
 - > E.g., CLIC's wall-plug-to-main-beam energy-transfer efficiency $\eta_{WP} = 11\%^*$ [1]

$$\begin{array}{l} \text{Electricity} \propto \frac{1}{\eta_{\text{WP}}} & P_{\text{beam}} & T_{\text{operating}} & C_{\text{electricity}} \approx \frac{\mathcal{O}\left(1\frac{M \in}{\text{year}}\right)^{**}}{\mathcal{O}(10\%)} \\ & \text{[MW]} & \text{[hours/year]} & \text{[€/MWh]} \end{array}$$

* no overhead included for cooling, ventilation or network
** with 28 MW of CLIC; 200 days; 45 €/MWh
[1] M. Aicheler *et al.*, CLIC Conceptual Design Report (2012)

Energy-transfer inefficiency could impede PWFA

For machines delivering high beam-power

- > Efficiency impacts the running costs
 - > E.g., CLIC's wall-plug-to-main-beam energy-transfer efficiency $\eta_{WP} = 11\%^*$ [1]

- > We have to demonstrate <u>at least</u> the same energy-transfer efficiency!
- > Also important for limitations in cell cooling

Driver energy depletion is key component for efficiency

- > Wall-plug-to-witness efficiency is a product of:
 - 1. Driver production efficiency $\sqrt{}$ (beam driven)

CLIC: [2] η = 55 % (excluding facility power) Ti:Sapphire laser: [3] η < 1 %

- 2. Driver-to-plasma energy transfer efficiency (i.e., driver depletion) This talk
- 3. Plasma-to-witness energy transfer efficiency $\sqrt{}$

[4]: η = 30 %
[5]: η = 42 %
[6]: η = 22 % – preserving beam quality

[1] Courtesy of A. Martinez de la Ossa and R. D'Arcy
[2] M. Aicheler *et al.*, CLIC Conceptual Design Report (2012)
[3] S. M. Hooker *et al.*, J. Phys. B: At. Mol. Opt. Phys. **47**, 234003 (2014)
[4] M. Litos *et al.*, Nature **515**, 92-95 (2014)
[5] C. A. Lindstrøm *et al.*, Phys. Rev. Lett. **126**, 014801 (2021)
[6] C. A. Lindstrøm *et al.*, to be published (2022)

Electron reacceleration is the limit of depletion

HiPACE++ simulations show reacceleration of energy depleted electrons

Plenary talk Wednesday 09:00 F. Peña

Photo: C. A. Lindstrøm

Electron re-acceleration measured for the first time

- > Electrons decelerate to 2% of their initial energy
 - > They are subsequently re-accelerated

Plasma light provides an insight on energy deposition

- Plasma emits light during > recombination
- The more energy is deposited by the > beam into the plasma, the more light is emitted [1, 2]
- Can be used to estimate energy > extraction efficiency

Thursday 18:05 L. Boulton

Parallel talk: WG1

Plasma light shows electron re-acceleration

- Drop in light-emission intensity from:
 - > Less energy deposition
 - More energy extraction
- Can identify the longitudinal position where re-acceleration starts
 - Deceleration over 115 mm (4.3 GV/m)
 - Acceleration over 80 mm (2.3 GV/m)

Spectrum reconstruction is required for accurate measurement

- Imaging energy scan required to reconstruct the 'true' energy spectrum of the beam to counteract charge loss due to under/overfocusing
- > Reconstruction only possible with high stability

Reconstructed spectra don't account for all charge

Driver depletion uncertainty dominated by charge loss

Charge loss is downstream of the plasma

- Charge is not lost in the plasma but in transport to the diagnostic
 - > Predominantly at lower energies
- > Lower-energy electrons have increased divergence from:
 - > Larger geometric emittance
 - Smaller matched beta function
 - Norm. emittance growth from non-linear focusing fields where the blowout forms

Charge loss can be predicted for all densities

- > Charge loss is
 - > Dependent on energy
 - > Approximately independent on plasma density
- Can construct a model to predict charge loss along the energy spectrum
- > Average rms error of charge-loss model: 2.4%

Corrected spectrum accounts for more charge

- > Charge loss is
 - > Dependent on energy
 - > Approximately independent on plasma density
- Can construct a model to predict charge loss along the energy spectrum
- > Average rms error of charge-loss model: 2.4%

Corrected spectrum accounts for more charge

- > Two sources of uncertainty:
 - > Error in measured spectrum
 - > Uncertainty in charge-loss model (on average 2.4%)
- > We use Monte Carlo, by sampling both within their error
 - > Error bars are central 68-percentile range
- > As the charge is lost post-plasma, we select the samples with full charge reconstruction to estimate the depletion

Charge-loss model is only valid without re-acceleration

- > Re-acceleration is a complex process
 - Charge has a different divergence and is not accounted for in the model
 - Model invalid for shots with re-acceleration
- Driver depletion only significant without re-acceleration, as it is detrimental to beam quality

Charge-loss model is only valid without re-acceleration

- > Re-acceleration is a complex process
 - Charge has a different divergence and is not accounted for in the model
 - Model invalid for shots with re-acceleration
- Driver depletion only significant without re-acceleration, as it is detrimental to beam quality

Drive bunch deposited (59±3)% of its energy

[1]

- We have sampled the spectra and charge-loss model within their error
- > As the charge is lost post-plasma, we select the samples with full charge reconstruction to estimate the depletion
 - From these, we can estimate the average depletion efficiency: (59±3)% at 1.4×10¹⁶ cm⁻³
 - > Using the rms, the uncertainty is ±3%
- > The expected depletion efficiency increase is $\sim n_{\rm pe}^{0.5}$ [2]
 - > Here, the exponent is $\gtrsim 0.5$

Conclusions

- Electron re-acceleration is a limit of overall energy efficiency in beam-driven PWFA
- > Drive-bunch energy depletion estimated to be (59±3)% [1]
 - > Can be increased by optimizing bunch current [2,3]
 - Simulations suggest ~90% is possible [4,5]
- > Next step in energy efficiency:
 - > Experimentally combine the independent record-efficiencies
 - > 59% driver-to-wake · 42% wake-to-trailing-bunch [6] = 25% driver-to-trailing-bunch
 - If combined with CLIC's 55% wall-plug-to-driver efficiency [7]
 - \rightarrow 14% wall-plug-to-trailing-bunch efficiency

(comparable with conventional accelerators)

- [1] F. Peña et al., in review (arXiv:2305.09581)
- [2] G. Loisch et al., Phys. Rev. Lett. 121, 064801 (2018)
- [3] R. Roussel et al., Phys. Rev. Lett. **124**, 044802 (2020)
- [4] K. V. Lotov et al., Physics of Plasmas 12, 053105 (2005)
- [5] Q. Su *et al.*, Physics of Plasmas **30**, 053108 (2023)
- [6] C. A. Lindstrøm et al., Phys. Rev. Lett. 126, 014801 (2021)

[7] M. Aicheler et al., CLIC Conceptual Design Report (2012) Pag