

INSTITUT POLYTECHNIQUE **DE PARIS**

<u>Hue et al., PRR 3, 043063 (2021)</u> <u>Cao et al., arXiv:2309.10495 (2023)</u> **arXiv:2309.10495** PHYSICAL REVIEW RESEARCH 3, 043063 (2021)

Physics > Accelerator Physics

[Submitted on 19 Sep 2023]

Positron Acceleration in Plasma Wakefields C. S. Hue,^{1,*} G. J. Cao^{(0,1,2,*} I. A. Andriyash^{(0,1} A. Knetsch^{(0,1} M. J. Hogan,³ E. Adli^{(0,2} S. Gessner,³ and S. Corde^{(0,1,†}

G.J.Cao, C.A.Lindstrøm, E.Adli, S.Corde, S.Gessner

Acceleration of positrons in plasmas with high energy efficiency

Sébastien Corde Laboratoire d'Optique Appliquée

loa.ensta-paris.fr

Numerical simulations were performance med using HPC resources from GENCI-TGCC (Grant No. 2020open source quasistatic PIC code QuickPIC. **Q20-A009** (510062) and using A0080510786 and No.

Efficiency and beam quality for positron acceleration in loaded plasma wakefields

- Scientific context: beyond electron acceleration in blowout regime
 - \succ Hosing for collider-type parameters
 - \succ Not directly suited for positrons
- Quasilinear regime with a positron load
 - \succ Efficiency
 - Evolution of transverse emittance
 - Uncorrelated energy spread \succ
- Energy efficiency vs beam quality tradeoff
 - \succ Quasilinear regime
 - Moderately nonlinear regime \succ
 - Donut-shaped drivers \succ
- The positron problem
 - ➤ Luminosity-per-power
 - \succ Electron motion
 - Strategies \succ

General remark: the discussion today will focus on PWFA, but is fully relevant to LWFA as well.

Scientific context Beyond electron acceleration in the blowout regime

<u>Key properties of the blowout regime:</u>

<u>Clayton et al., Nat Comm 7, 12483 (2016)</u>

EM fields inside cavity:

$$\frac{1}{4}k_p r \mathbf{e}_{\theta}$$
$$\frac{1}{4}k_p r \mathbf{e}_{\theta}$$

experienced by an e-:

$$E_r - cB_\theta) = -\frac{eE_0k_p}{2}r$$

Focusing force linear in r

Additional properties:

$$= 0 \qquad \partial_r F_z = 0$$

The blowout regime has ideal field properties for e-:

emittance preservation is expected to be achievable.

beam loading allow for high

efficiency, flat E_z field and therefore low energy spread.

most studied regime for

electron acceleration, in both LWFA and PWFA.

<u>Key properties of the blowout regime:</u>

<u>Clayton et al., Nat Comm 7, 12483 (2016)</u>

EM fields inside cavity:

$$\frac{1}{4}k_p r \mathbf{e}_{\theta}$$
$$\frac{1}{4}k_p r \mathbf{e}_{\theta}$$

experienced by an e-:

$$E_r - cB_\theta) = -\frac{eE_0k_p}{2}r$$

Focusing force linear in r

Additional properties:

$$= 0 \qquad \partial_r F_z = 0$$

The blowout regime has ideal field properties for e-:

emittance preservation is expected to be achievable.

beam loading allow for high

 \longrightarrow efficiency, flat E_z field and therefore low energy spread.

most studied regime for

electron acceleration, in both LWFA and PWFA.

But:

hosing instability may be an

- important limitation for collider beam parameters.
- ion motion may lead to emittance growth.

what abut e+?

Scientific context: challenges LOA

The blowout regime has ideal field properties for e-: emittance preservation is expected to be achievable. beam loading allow for high efficiency, flat E_z field and therefore low energy spread. most studied regime for electron acceleration, in both LWFA and PWFA. But: hosing instability may be an important limitation for collider beam parameters. ion motion may lead to emittance growth. what abut e+?

 $(\partial_{\tau}^2 + \omega_{\beta}^2)x_b = \omega_{\beta}^2 x_c$ $(\partial_{\xi}^2 + c_r c_{\psi} k_p^2/2)x_c = c_r c_{\psi} k_p^2 x_b/2$

 $\tilde{x_b} \propto \exp(a\xi^{2/3}\tau^{1/3})$

exponential growth of betatron oscillations can lead to beam breakup

Huang et al., PRL 99, 255001 (2007)

Scientific context: 1st motivation to go beyond blowout

 $(\partial_{\tau}^2 + \omega_{\beta}^2)x_b = \omega_{\beta}^2 x_c$ $(\partial_{\xi}^2 + c_r c_{\psi} k_p^2/2)x_c = c_r c_{\psi} k_p^2 x_b/2$

 $\tilde{x_b} \propto \exp(a\xi^{2/3}\tau^{1/3})$

exponential growth of betatron oscillations can lead to beam breakup

Huang et al., PRL 99, 255001 (2007)

Scientific context: 1st motivation to go beyond blowout

Efficiency vs instability relation

 $\frac{\text{wake-deflecting force}}{\text{focusing force}} \simeq \frac{\eta_{p \to t}^2}{4(1 - \eta_{p \to t})}$

Lebedev et al., PRAB 20, 121301 (2017)

 $(\partial_{\tau}^2 + \omega_{\beta}^2)x_b = \omega_{\beta}^2 x_c$ $(\partial_{\xi}^2 + c_r c_{\psi} k_p^2/2)x_c = c_r c_{\psi} k_p^2 x_b/2$

 $\tilde{x_h} \propto \exp(a\xi^{2/3}\tau^{1/3})$

exponential growth of betatron oscillations can lead to beam breakup

Huang et al., PRL 99, 255001 (2007)

Scientific context: 1st motivation to go beyond blowout

Efficiency vs instability relation

 $\frac{\text{wake-deflecting force}}{\text{focusing force}} \simeq \frac{\eta_{p \to t}^2}{4(1 - \eta_{p \to t})}$

Lebedev et al., PRAB 20, 121301 (2017)

Energy chirp to mitigate hosing is too large to be realistic?

Mehrling et al., PRAB 22, 031302 (2019)

 $(\partial_{\tau}^2 + \omega_{\beta}^2)x_b = \omega_{\beta}^2 x_c$ $(\partial_{\xi}^2 + c_r c_{\psi} k_p^2/2)x_c = c_r c_{\psi} k_p^2 x_b/2$

 $\tilde{x_b} \propto \exp(a\xi^{2/3}\tau^{1/3})$

exponential growth of betatron oscillations can lead to beam breakup

Huang et al., PRL 99, 255001 (2007)

Possible solutions:

- Ion-motion induced head-to-tail decoherence _ [Mehrling et al., PRL 121, 264802 (2018)]
- Use quasilinear regime with head-to-tail variation of focusing force -[Lehe et al., PRL 119, 244801 (2017)]

Scientific context: 1st motivation to go beyond blowout

Efficiency vs instability relation

 $\frac{\text{wake-deflecting force}}{\text{focusing force}} \simeq \frac{\eta_{p \to t}^2}{4(1 - \eta_{p \to t})}$

Lebedev et al., PRAB 20, 121301 (2017)

Energy chirp to mitigate hosing is too large to be realistic?

Mehrling et al., PRAB 22, 031302 (2019)

need to look at the physics beyond idealised blowout

Accelerating positrons in plasma?

Plasma acceleration for an advanced linear collider? Positrons strongly desired, but:

« The most outstanding problem is the acceleration of positrons with bunch brightness, required for a linear collider » [Lebedev et al., World Sci. (2016)].

Accelerating positrons in plasma?

- Plasma acceleration for an advanced linear collider? Positrons strongly desired, but:
- « The most outstanding problem is the acceleration of positrons with bunch brightness, required for a linear collider » [Lebedev et al., World Sci. (2016)].
- Nonlinear wakefields, e.g. blowout, are asymmetric: what works for e- may not work for e+.

Plasma electrons are mobile but ions are not.

Charge symmetry is broken in the nonlinear regime.

Accelerating positrons in plasma?

- Plasma acceleration for an advanced linear collider? Positrons strongly desired, but:
- « The most outstanding problem is the acceleration of positrons with bunch brightness, required for a linear collider » [Lebedev et al., World Sci. (2016)].
- Nonlinear wakefields, e.g. blowout, are asymmetric: what works for e- may not work for e+.

Possible solutions:

- Quasilinear regime and a wealth of advanced regimes varying beam and plasma geometries, typically with plasma e- flowing through the e+ bunch.

Plasma electrons are mobile but ions are not.

Charge symmetry is broken in the nonlinear regime.

need to look at the physics beyond idealised blowout

Quasilinear regime with a positron load

$$\eta_{p \to t} = \frac{W_{\text{gain}}}{W_{\text{loss}}} = \left| \frac{N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d} \right|$$

short bunches, linear and 1D

$$\eta_{p \to t} = \frac{W_{\text{gain}}}{W_{\text{loss}}} = \left| \frac{N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d} \right|$$

short bunches, linear and 1D

Linear 3D case:

$$\eta_{p \to t} = \frac{W_{\text{gain}}}{W_{\text{loss}}} = \left| \frac{N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d} \right|$$

short bunches, linear and 1D

Linear 3D case:

Hue et al., PRR 3, 043063 (2021)

$$\eta_{p \to t} = \frac{W_{\text{gain}}}{W_{\text{loss}}} = \left| \frac{N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d} \right|$$

short bunches, linear and 1D

Linear 3D case:

<u>Hue et al., PRR 3, 043063 (2021)</u>

 $\eta_{p \to t, 1D \text{ linear}}$

Quasi-matching/transverse equilibrium:

 $F_x \simeq -gx$ with g the gradient of the focusing force,

Enveloppe equation:

$$\frac{d^2\sigma_x}{dz^2} = -k_\beta^2\sigma_x + \frac{\varepsilon^2}{\sigma_x^3} \qquad \text{with} \quad k_\beta =$$

$$\implies \beta_{\text{matched}} = 1/k_{\beta}$$

	$\sigma_{ m tr}~(\mu{ m m})$	$\varepsilon_n (\mu \mathrm{m})$	β (cm)	$\sigma_{tz} (\mu \mathrm{m})$	n_b/n_0	$k_b \sigma_{tz}$	E (GeV)	η (
	0.7	0.5	0.20	2.14	1	0.09	1	0.
	0.8	0.5	0.26	2.14	1	0.09	1	0.
Fig. 3(a)	1.0	0.5	0.40	2.14	1	0.09	1	0.
0	1.6	0.5	1.02	2.14	1	0.09	1	1.
	1.01	0.5	0.41	2.14	0.25	0.045	1	0.
Fig. 3(b)	1.00	0.5	0.40	2.14	2.5	0.14	1	1.
•	0.80	0.5	0.26	2.14	25	0.45	1	9.
	0.327	0.5	4.28	2.14	1	0.09	100	0.
Fig. 3(b)	0.288	0.5	3.33	2.14	25	0.45	100	1.
	0.189	0.5	1.43	2.14	250	1.4	100	5.

$$=\sqrt{g/\gamma m_e c^2}$$

Quasi-matching/transverse equilibrium:

 $F_x \simeq -gx$ with g the gradient of the focusing force,

Enveloppe equation:

$$\frac{d^2\sigma_x}{dz^2} = -k_\beta^2\sigma_x + \frac{\varepsilon^2}{\sigma_x^3} \qquad \text{with} \quad k_\beta = \sqrt{g/\gamma m_e c^2}$$

$$\implies \beta_{\text{matched}} = 1/k_{\beta}$$

(a): quasi-matching is extremely important to minimize emittance growth at acceptable levels. Demonstrate that near transverse equilibrium is possible with Gaussian positron beams.

	$\sigma_{ m tr}~(\mu{ m m})$	$\varepsilon_n (\mu \mathrm{m})$	β (cm)	$\sigma_{tz} (\mu \mathrm{m})$	n_b/n_0	$k_b\sigma_{tz}$	E (GeV)	η (
	0.7	0.5	0.20	2.14	1	0.09	1	0.3
	0.8	0.5	0.26	2.14	1	0.09	1	0.3
Fig. 3(a)	1.0	0.5	0.40	2.14	1	0.09	1	0.6
0	1.6	0.5	1.02	2.14	1	0.09	1	1.5
	1.01	0.5	0.41	2.14	0.25	0.045	1	0.1
Fig. 3(b)	1.00	0.5	0.40	2.14	2.5	0.14	1	1.5
•	0.80	0.5	0.26	2.14	25	0.45	1	9.1
	0.327	0.5	4.28	2.14	1	0.09	100	0.0
Fig. 3(b)	0.288	0.5	3.33	2.14	25	0.45	100	1.6
2 ()	0.189	0.5	1.43	2.14	250	1.4	100	5.2

Quasi-matching/transverse equilibrium:

 $F_{x} \simeq -gx$ with g the gradient of the focusing force,

Enveloppe equation:

$$\frac{d^2\sigma_x}{dz^2} = -k_\beta^2\sigma_x + \frac{\varepsilon^2}{\sigma_x^3} \qquad \text{with} \quad k_\beta =$$

$$\implies \beta_{\text{matched}} = 1/k_{\beta}$$

- (a): quasi-matching is extremely important to minimize emittance growth at acceptable levels. Demonstrate that near transverse equilibrium is possible with Gaussian positron beams.
- (b): this is still valid for $n_b/n_0 \gg 1$, that is for a nonlinear positron load in a linearly-driven plasma wakefield.

	$\sigma_{ m tr}~(\mu{ m m})$	$\varepsilon_n (\mu \mathrm{m})$	β (cm)	$\sigma_{tz} (\mu \mathrm{m})$	n_b/n_0	$k_b \sigma_{tz}$	E (GeV)	η (9
	0.7	0.5	0.20	2.14	1	0.09	1	0.3
	0.8	0.5	0.26	2.14	1	0.09	1	0.3
Fig. 3(a)	1.0	0.5	0.40	2.14	1	0.09	1	0.6
0	1.6	0.5	1.02	2.14	1	0.09	1	1.5
	1.01	0.5	0.41	2.14	0.25	0.045	1	0.1
Fig. 3(b)	1.00	0.5	0.40	2.14	2.5	0.14	1	1.5
0	0.80	0.5	0.26	2.14	25	0.45	1	9.1
	0.327	0.5	4.28	2.14	1	0.09	100	0.0
Fig. 3(b)	0.288	0.5	3.33	2.14	25	0.45	100	1.6
2 ()	0.189	0.5	1.43	2.14	250	1.4	100	5.2

Quasi-matching/transverse equilibrium:

 $F_{\rm r} \simeq -gx$ with g the gradient of the focusing force,

Enveloppe equation:

$$\frac{d^2\sigma_x}{dz^2} = -k_\beta^2\sigma_x + \frac{\varepsilon^2}{\sigma_x^3} \qquad \text{with} \quad k_\beta =$$

$$\implies \beta_{\text{matched}} = 1/k_{\beta}$$

- (a): quasi-matching is extremely important to minimize el growth at acceptable levels. Demonstrate that near tran equilibrium is possible with Gaussian positron beams.
- (b): this is still valid for $n_b/n_0 \gg 1$, that is for a nonlinear period a linearly-driven plasma wakefield.
- (c): for $k_b \sigma_7 > 1$, the situation qualitatively changes, and new ideas are needed to mitigate emittance growth

$$\overline{g/\gamma m_e c^2}$$

mittance
nsverse
ositron load in

$$\frac{n_b e^2}{n_e \epsilon_0} = \sqrt{\frac{n_b}{n_0}} k_p$$

	$\sigma_{ m tr}~(\mu{ m m})$	$\varepsilon_n (\mu \mathrm{m})$	β (cm)	$\sigma_{tz} (\mu \mathrm{m})$	n_b/n_0	$k_b \sigma_{tz}$	E (GeV)	η (
	0.7	0.5	0.20	2.14	1	0.09	1	0.3
	0.8	0.5	0.26	2.14	1	0.09	1	0.3
Fig. 3(a)	1.0	0.5	0.40	2.14	1	0.09	1	0.0
0	1.6	0.5	1.02	2.14	1	0.09	1	1.
	1.01	0.5	0.41	2.14	0.25	0.045	1	0.
Fig. 3(b)	1.00	0.5	0.40	2.14	2.5	0.14	1	1.
•	0.80	0.5	0.26	2.14	25	0.45	1	9.
	0.327	0.5	4.28	2.14	1	0.09	100	0.0
Fig. 3(b)	0.288	0.5	3.33	2.14	25	0.45	100	1.0
	0.189	0.5	1.43	2.14	250	1.4	100	5.2

(a) Varving matching conditions

Evolution of longitudinal phase space

Two contributions to the energy spread:

- Correlated energy spread: very important but can potentially be removed by dechirping or beam loading
- Uncorrelated/slice energy spread: fundamental limit, it spoils the longitudinal emittance irreversibly

Uncorrelated energy spread in quasilinear regime

slice energy spread

Evolution of longitudinal phase space

Two contributions to the energy spread:

- Correlated energy spread: very important but can potentially be removed by dechirping or beam loading
- Uncorrelated/slice energy spread: fundamental limit, it spoils the longitudinal emittance irreversibly

Uncorrelated energy spread as figure of merit:

$$\delta = \frac{1}{\langle E_z \rangle} \left[\frac{1}{N_b} \int [E_z(x, y, \xi) - \langle E_z \rangle(\xi)]^2 n_b dx dy d\xi \right]^{1/2}$$

Uncorrelated energy spread in quasilinear regime

slice energy spread

0.06

-1.6

0.0

k_px

-0.8

0.8

Energy efficiency vs beam quality tradeoff

Process:

- Increasing efficiency by increasing positron load –
- Re-optimize drive beam size for each value of the positron load
- Determine uncorrelated energy spread δ

Energy efficiency η vs uncorrelated energy spread δ

$$\eta_{p \to t} = \frac{\langle N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d}$$

Process:

- Increasing efficiency by increasing positron load –
- Re-optimize drive beam size for each value of the positron load
- Determine uncorrelated energy spread δ

Note: quasi-matching here is ensured for micron-scale normalised emittance, plasma density is kept fixed at 5 10^{16} cm⁻³

Energy efficiency η vs uncorrelated energy spread δ

$$\eta_{p \to t} = \left| \frac{N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d} \right|$$

Process:

- Increasing efficiency by increasing positron load –
- Re-optimize drive beam size for each value of the positron load
- Determine uncorrelated energy spread δ

Note: quasi-matching here is ensured for micron-scale normalised emittance, plasma density is kept fixed at 5 10^{16} cm⁻³

Regimes considered here with uniform plasma:

- Linearly-driven plasma wakefield, linear or nonlinear positron load
- Moderately nonlinear regime, driver with $n_b/n_0 \in [1, 2]$ and $\Lambda < 1$
- Nonlinear plasma wakefield with donut-shaped drivers

Energy efficiency η vs uncorrelated energy spread δ

$$\eta_{p \to t} = \frac{\langle N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d}$$

• At low drive charge (38 pC), can reach $\eta \sim 30\,\%$ with $\delta \lesssim 1\,\%$, but positron charge is limited to 5 pC and $E_{z} \sim 1 \ {\rm GV} \ {\rm m}^{-1}$

ear low charge		Linear high	Linear high charge		tely nonlinear	Donut driver		
•	Trailing	Driver	Trailing	Driver Trailing		Driver	r Trailing	
27	1.19	12.19–14.56	1.19	6.28-8.22	1.19	9.4	0.85	
	2.14	16.7	2.14	16.7	2.14	16.7	2.14	
	0.25-15.5	0.35-0.5	1–75	1.1-1.88	25-70	2.97	35-15 00	
	-6.2	0	-6.2	0	-6.255.90	0	-0.55	

- At low drive charge (38 pC), can reach $\eta \sim 30\%$ with $\delta \lesssim 1\%$, but positron charge is limited to 5 pC and $E_z \sim 1 \ {\rm GV} \ {\rm m}^{-1}$
- At higher drive charge (152 pC), drive beam size can no longer be optimised for $\eta \gtrsim 20\%$ because otherwise it becomes nonlinear. This results in large δ , unless the efficiency is limited to $\eta \leq 10\%$

ear low charge		Linear high	Linear high charge		tely nonlinear	Donut driver		
[Trailing	Driver	Trailing	Driver	Driver Trailing		Trailing	
.27	1.19	12.19–14.56	1.19	6.28-8.22	1.19	9.4	0.85	
	2.14	16.7	2.14	16.7	2.14	16.7	2.14	
5	0.25-15.5	0.35-0.5	1–75	1.1-1.88	25-70	2.97	35-15 000	
	-6.2	0	-6.2	0	-6.25 - 5.90	0	-0.55	

- At low drive charge (38 pC), can reach $\eta \sim 30\%$ with $\delta \lesssim 1\%$, but positron charge is limited to 5 pC and $E_{z} \sim 1 \ {\rm GV} \ {\rm m}^{-1}$
- At higher drive charge (152 pC), drive beam size can no longer be optimised for $\eta \gtrsim 20\%$ because otherwise it becomes nonlinear. This results in large δ , unless the efficiency is limited to $\eta \leq 10\%$
- When continuing to optimise drive beam size at high drive charge (152 pC), one transitions to a moderately nonlinear regime. $\eta \sim 40\%$ with $\delta \leq 1 \%$ possible with 25 pC of positron charge and $E_{z} \simeq 5 \text{ GV m}^{-1}$.

ear low charge		Linear high	charge	Moderat	tely nonlinear	Donut driver		
•	Trailing	Driver	Trailing	Driver	Driver Trailing		Trailing	
27	1.19 2.14 0.25–15.5 –6.2	12.19–14.56 16.7 0.35–0.5 0	1.19 2.14 1–75 –6.2	6.28–8.22 16.7 1.1–1.88 0	1.19 2.14 25–70 –6.25 – –5.90	9.4 16.7 2.97 0	0.85 2.14 35–15 00 –0.55	

)0

- At low drive charge (38 pC), can reach $\eta \sim 30\,\%$ with $\delta \lesssim 1\,\%$, but positron charge is limited to 5 pC and $E_{z} \sim 1 \ {\rm GV} \ {\rm m}^{-1}$
- At higher drive charge (152 pC), drive beam size can no longer be optimised for $\eta \gtrsim 20\%$ because otherwise it becomes nonlinear. This results in large δ , unless the efficiency is limited to $\eta \leq 10\%$
- When continuing to optimise drive beam size at high drive charge (152 pC), one transitions to a moderately nonlinear regime. $\eta \sim 40\%$ with $\delta \lesssim 1~\%$ possible with 25 pC of positron charge and $E_{z} \simeq 5 \text{ GV m}^{-1}$.
 - Nonlinear donut drivers: very high fields and positron charges, but degraded tradeoff between η and δ . Limited to $\eta \leq 5\%$ for $\delta \lesssim 1\%$.

ear low charge		Linear high	charge	Moderat	tely nonlinear	Donut driver		
	Trailing	Driver	Trailing	Driver	Trailing	Driver	Trailing	
27	1.19 2.14 0.25–15.5 –6.2	12.19–14.56 16.7 0.35–0.5 0	1.19 2.14 1–75 –6.2	6.28–8.22 16.7 1.1–1.88 0	1.19 2.14 25–70 –6.25 – –5.90	9.4 16.7 2.97 0	0.85 2.14 35–15 00 –0.55	

)0

The positron problem Plasma electron motion and transverse beam loading

Q

Cornell University

Physics > Accelerator Physics

arXiv:2309.10495v1 (physics)

[Submitted on 19 Sep 2023]

Positron Acceleration in Plasma Wakefields

G.J.Cao, C.A.Lindstrøm, E.Adli, S.Corde, S.Gessner

Download PDF

Plasma acceleration has emerged as a promising technology for future particle accelerators, particularly linear colliders. Significant progress has been made in recent decades toward high-efficiency and highquality acceleration of electrons in plasmas. However, this progress does not generalize to acceleration of positrons, as plasmas are inherently charge asymmetric. Here, we present a comprehensive review of historical and current efforts to accelerate positrons using plasma wakefields. Proposed schemes that aim to increase the energy efficiency and beam quality are summarised and quantitatively compared. A dimensionless metric that scales with the luminosity-perbeam power is introduced, indicating that positron-acceleration schemes are currently below the ultimate requirement for colliders. The primary issue is electron motion; the high mobility of plasma electrons compared to plasma ions, which leads to non-uniform accelerating and focusing fields that degrade the beam quality of the positron bunch, particularly for high efficiency acceleration. Finally, we discuss possible mitigation strategies and directions for future research.

Normalized accelerating field, E_z/E_0

Figure of merit: **luminosity per power**

$$\mathscr{L} \approx \frac{1}{8\pi m_e c^2} \frac{P_{\text{wall}}}{\sqrt{\beta_x \epsilon_{nx}}} \frac{\eta N}{\sqrt{\beta_y \epsilon_{ny}}}$$

$$\frac{\mathscr{L}}{P_{\text{wall}}} \propto \tilde{\mathscr{L}}_{P} = \frac{\eta_{\text{extr}} \tilde{\mathcal{Q}}}{\tilde{\epsilon}_{n}}$$

$$\tilde{\epsilon}_n = k_p \sqrt{\epsilon_{nx} \epsilon_{ny}}$$
$$\tilde{Q} = 4\pi r_e k_p N$$

with:

Why such a big gap?

Why such a big gap?

 Plasma electrons used for positron focusing are very light, much lighter than ions used for electron focusing in blowout:

 $m_e \ll m_i$

10³

10²

 10^{1}

10⁰

 10^{-1}

 10^{-2}

 $= \eta_{extr} \tilde{Q}/\tilde{\varepsilon}_n$

 $\tilde{\mathcal{L}}_{\mathsf{P}}$

Dimensionless luminosity-per-power,

Why such a big gap?

Plasma electrons used for positron focusing are very light, much lighter than ions used for electron focusing in blowout:

$$m_e \ll m_i$$

Plasma electron motion similar to ion motion in blowout, and can be described by a phase advance in the bunch:

$$\Delta \phi_{i} \simeq k_{i} \Delta \zeta = \sqrt{\frac{\mu_{0} e^{2}}{2} \frac{Z \sigma_{z} N}{m_{i}}} \sqrt{\frac{r_{e} \gamma n_{0}}{\epsilon_{nx} \epsilon_{ny}}} \quad \text{ion motion} \quad \sup_{i=10^{-10}}^{10^{10}} \Delta \phi_{e} \simeq k_{e} \Delta \zeta = \sqrt{\frac{\mu_{0} e^{2}}{2} \frac{\sigma_{z} N}{\gamma_{pe} m_{e}}} \sqrt{\frac{r_{e} \gamma \Delta n}{\epsilon_{nx} \epsilon_{ny}}} \quad \text{electron motion}$$

The positron problem

What can we learn about plethora of schemes?

Regimes overcoming $\Delta \phi_e \lesssim \pi/2$ limit are the most promising.

LOA

 Charge also very important, favouring nonlinear regimes.

$\tilde{\tilde{\zeta}}_{\tilde{\zeta}}^{U}$					e− sim	nonlinear Julation (1.5 Te	eV) flat e ⁻ bu	Ion-motion li Inch at 1 TeV (imit for (argon)
	entional techr	ULIN) voloa							
	Density	Gradient	Charge	Energy	Emittance	En. spread	Uncorr.	Fin. energy	
Scheme	(cm^{-3})	(GV/m)	(pC)	efficiency	(mm mrad)	per gain	en. spread	(GeV)	$\Delta \phi_e$
Quasi-linear regime (sim.)	5×10^{16}	1.3	4.3	30%	0.64	$\sim 10\%^{\mathrm{a}}$	0.7%	1	0.77
Quasi-linear regime (exp.)	$1 imes 10^{16}$	1	85	40%	$127^{ m b}$	$\sim 14\%$	n/a	21	0.51
Nonlinear regime	$7.8 imes 10^{15}$	1.6	102	26%	8	2.4%	n/a	5.2	7.6
Donut driver $(#1)$	5×10^{16}	8.9	13.6	0.17%	0.036	0.3%	n/a	35.4	0.50
Donut driver $(#2)$	$5 imes 10^{16}$	40	189	3.5%	$1.5^{ m c}$	6%	1%	1	7.1
Finite-radius channel	5×10^{17}	30	52	3%	0.38	0.86%	0.73%	5.5	34
Laser-augmented blowout	$2 imes 10^{17}$	20	15	5.5%	31	3.4%	n/a	~ 10	0.67
Thin, warm, hollow channel	1×10^{16}	3.5	100	$4.7\%^{ m d}$	7.4	6%	n/a	1.45	2.0
Asymmetric hollow channel	3.1×10^{16}	4.9	490	33%	67	5.3%	n/a	14.6	6.5
e^- nonlinear regime (sim.)	$2 imes 10^{16}$	-10	800	37.5%	$0.133^{ m e}$	1.1%	$\lesssim 1\%$	1500	292
e^- nonlinear regime (exp.)	$1.2 imes 10^{16}$	-1.4	40	22%	2.8	1.6%	n/a	1.1	3.0
Conv. technology (CLIC)	n/a	0.1	596	$28.5\%^{\mathrm{f}}$	0.11	0.35%	n/a	1500	n/a
					Lase	r-augmented			

blowout (10 GeV) 🧲

 10^{-1}

10⁰

Normalized accelerating field, E_z/E_0

Strategies to fill the gap:

10³ $= \eta_{extr} \tilde{Q} / \tilde{\varepsilon}_n$ Slice-by-slice matching $\Delta \phi_e$ 10² Plasma electron temperature ${ ilde {\cal L}}_{\sf P}$ Dimensionless luminosity-per-power, Spread plasma electrons: different plasma 10¹ electrons to focus different positron beam slices 10⁰ Quasi-linear 10^{-1} 10^{-2}

Strategies to fill the gap:

Slice-by-slice matching

 $\Delta \phi_e$

 η_{extr}

- Plasma electron temperature
- Spread plasma electrons: different plasma electrons to focus different positron beam slices
- Energy recovery to improve efficiency next talk from S. Gessner
- Decrease emittance to compensate for low efficiency in $\tilde{\mathscr{L}}_{P}$

Strategies to fill the gap:

Slice-by-slice matching

 $\Delta \phi_e$

 η_{extr}

- Plasma electron temperature
- Spread plasma electrons: different plasma electrons to focus different positron beam slices
- Energy recovery to improve efficiency next talk from S. Gessner
- Decrease emittance to compensate for low efficiency in $\tilde{\mathscr{L}}_{P}$
- Low focusing and large beta function
- High Lorentz factor for plasma electrons

- beam loading
- (e.g. emittance, uncorrelated energy spread)

• Energy efficiency comes with a strong positron load, and thus with transverse

• For most regimes, there is a tradeoff between energy efficiency and beam quality

• Luminosity-per-power scaling and electron motion highlights future directions

Thank you for your attention