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• Quasilinear regime with a positron load 
➢ Efficiency 
➢ Evolution of transverse emittance 
➢ Uncorrelated energy spread 
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General remark: the discussion today will focus on PWFA, but is fully relevant to LWFA as well.



Scientific context 
Beyond electron acceleration in the blowout regime
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Scientific context: blowout as an ideal regime

Key properties of the blowout regime:

The blowout regime has 
ideal field properties for e-:

E/E0 =
1
2

kpξ ez +
1
4

kpr er

cB/E0 = −
1
4

kpr eθ

Fr = − e(Er − cBθ) = −
eE0kp

2
r

EM fields inside cavity:

Transverse force 
experienced by an e-:

beam loading allow for high 
efficiency, flat Ez field and 
therefore low energy spread.

Additional properties:

∂ξFr = 0 ∂rFz = 0

Focusing force linear in r

emittance preservation is 
expected to be achievable.

most studied regime for 
electron acceleration, in both 
LWFA and PWFA.

Clayton et al., Nat Comm 7, 12483 (2016)

http://dx.doi.org/10.1038/ncomms12483
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But:

what abut e+?

http://dx.doi.org/10.1038/ncomms12483
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Scientific context: challenges

Key properties of the blowout regime:

The blowout regime has 
ideal field properties for e-:
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Joshi, Corde and Mori, Phys. Plasmas 27, 070602 (2020)

https://doi.org/10.1063/5.0004039
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Scientific context: 1st motivation to go beyond blowout

Hosing/beam break-up instability

(∂2
ξ + crcψk2

p /2)xc = crcψk2
p xb /2

(∂2
τ + ω2

β)xb = ω2
β xc

Huang et al., PRL 99, 255001 (2007)

x̃b ∝ exp(aξ2/3τ1/3)

exponential growth of betatron 
oscillations can lead to beam breakup

http://dx.doi.org/10.1103/PhysRevLett.99.255001
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x̃b ∝ exp(aξ2/3τ1/3)

wake-deflecting force
focusing force

≃
η2

p→t

4(1 − ηp→t)

Lebedev et al., PRAB 20, 121301 (2017)

Efficiency vs instability relation

exponential growth of betatron 
oscillations can lead to beam breakup

http://dx.doi.org/10.1103/PhysRevLett.99.255001
https://doi.org/10.1103/PhysRevAccelBeams.20.121301
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Scientific context: 1st motivation to go beyond blowout

Hosing/beam break-up instability
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wake-deflecting force
focusing force

≃
η2

p→t

4(1 − ηp→t)

Lebedev et al., PRAB 20, 121301 (2017)

Efficiency vs instability relation

exponential growth of betatron 
oscillations can lead to beam breakup

Mehrling et al., PRAB 22, 031302 (2019)

Energy chirp to mitigate hosing 
is too large to be realistic?

Possible solutions:

- Ion-motion induced head-to-tail decoherence 
[Mehrling et al., PRL 121, 264802 (2018)]

- Use quasilinear regime with head-to-tail variation of focusing force 
[Lehe et al., PRL 119, 244801 (2017)]

need to look at the physics 
beyond idealised blowout

http://dx.doi.org/10.1103/PhysRevLett.99.255001
https://doi.org/10.1103/PhysRevAccelBeams.20.121301
https://doi.org/10.1103/PhysRevAccelBeams.22.031302
https://doi.org/10.1103/PhysRevLett.121.264802
https://doi.org/10.1103/PhysRevLett.119.244801
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Scientific context: 2nd motivation to go beyond blowout

Accelerating positrons in plasma?

«  The most outstanding problem is the acceleration of positrons with bunch brightness, 
required for a linear collider » [Lebedev et al., World Sci. (2016)].

Plasma acceleration for an advanced linear collider? Positrons strongly desired, but:
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Scientific context: 2nd motivation to go beyond blowout

Accelerating positrons in plasma?

Nonlinear wakefields, e.g. blowout, are asymmetric: what works for e- may not work for e+.

Plasma electrons are mobile 
but ions are not. 

Charge symmetry is broken 
in the nonlinear regime.

mi >> me

e- e+

«  The most outstanding problem is the acceleration of positrons with bunch brightness, 
required for a linear collider » [Lebedev et al., World Sci. (2016)].

Plasma acceleration for an advanced linear collider? Positrons strongly desired, but:

need to look at the physics 
beyond idealised blowout

Possible solutions:
- Quasilinear regime and a wealth of advanced regimes 

varying beam and plasma geometries, typically with 
plasma e- flowing through the e+ bunch.



Quasilinear regime with a positron load
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Efficiency in quasilinear regime

Energy efficiency from plasma to accelerated trailing bunch

ηp→t =
Wgain
Wloss

=
Nt⟨Ez⟩t

Nd⟨Ez⟩d
ηp→t,1D linear =

Nt

Nd (2 −
Nt

Nd )short bunches, linear and 1D
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Efficiency in quasilinear regime

Energy efficiency from plasma to accelerated trailing bunch

ηp→t =
Wgain
Wloss

=
Nt⟨Ez⟩t

Nd⟨Ez⟩d
ηp→t,1D linear =

Nt

Nd (2 −
Nt

Nd )short bunches, linear and 1D

Linear 3D case:

Hue et al., PRR 3, 043063 (2021)
ηp→t,1D linear =

Nt

Nd (2 −
Nt

Nd )

ηp→t =
Nt

Nd

σ2
dr

σ2
tr

4

1 +
σ2

dr

σ2
tr

−
Nt

Nd

‣ Same shape for drive and trailing 
bunches: linear 3D = linear 1D.

https://doi.org/10.1103/PhysRevResearch.3.043063
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‣ Same shape for drive and trailing 
bunches: linear 3D = linear 1D.

‣ Highest efficiency: smallest fields 
left behind

‣ Small beams ( ) are 
much better because the fields 

extend over a plasma skin depth 
regardless of beam size

kpσr ≪ 1

https://doi.org/10.1103/PhysRevResearch.3.043063
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Transverse emittance in quasilinear regime

Evolution of transverse emittance

⟹ βmatched = 1/kβ

d2σx

dz2
= − k2

βσx +
ε2

σ3
x

Fx ≃ − gx  with  the gradient of the focusing force, g

Quasi-matching/transverse equilibrium:

Enveloppe equation: with kβ = g/γmec2
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Transverse emittance in quasilinear regime

Evolution of transverse emittance

⟹ βmatched = 1/kβ

d2σx

dz2
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βσx +
ε2

σ3
x

Fx ≃ − gx  with  the gradient of the focusing force, g

Quasi-matching/transverse equilibrium:

Enveloppe equation: with kβ = g/γmec2

‣ (a): quasi-matching is extremely important to minimize emittance 
growth at acceptable levels. Demonstrate that near transverse 
equilibrium is possible with Gaussian positron beams.
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a linearly-driven plasma wakefield.

nb/n0 ≫ 1
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Transverse emittance in quasilinear regime

Evolution of transverse emittance

⟹ βmatched = 1/kβ

d2σx

dz2
= − k2

βσx +
ε2

σ3
x

Fx ≃ − gx  with  the gradient of the focusing force, g

Quasi-matching/transverse equilibrium:

Enveloppe equation: with kβ = g/γmec2

‣ (a): quasi-matching is extremely important to minimize emittance 
growth at acceptable levels. Demonstrate that near transverse 
equilibrium is possible with Gaussian positron beams.

‣ (b): this is still valid for , that is for a nonlinear positron load in 
a linearly-driven plasma wakefield.

nb/n0 ≫ 1

‣ (c): for , the situation qualitatively changes, and new ideas are 
needed to mitigate emittance growth

kbσz > 1

kb =
1
c

nbe2

meϵ0
=

nb

n0
kp
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Uncorrelated energy spread in quasilinear regime

Evolution of longitudinal phase space nb/n0 = 6

Two contributions to the energy spread:

‣ Correlated energy spread: very important but can 
potentially be removed by dechirping or beam loading

nb/n0 = 20

‣ Uncorrelated/slice energy spread: fundamental 
limit, it spoils the longitudinal emittance irreversibly 

slice energy spread

nb/n0 = 50
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Uncorrelated energy spread in quasilinear regime

Evolution of longitudinal phase space nb/n0 = 6

Two contributions to the energy spread:

‣ Correlated energy spread: very important but can 
potentially be removed by dechirping or beam loading

nb/n0 = 20 nb/n0 = 50

‣ Uncorrelated/slice energy spread: fundamental 
limit, it spoils the longitudinal emittance irreversibly 

δ =
1

⟨Ez⟩ [ 1
Nb ∫ [Ez(x, y, ξ) − ⟨Ez⟩(ξ)]2nbdxdydξ]

1/2

Uncorrelated energy spread 
as figure of merit:

slice energy spread

Driver can be optimised to minimize 
uncorrelated energy spread:

Transverse 
flattening of Ez



Energy efficiency vs beam quality tradeoff
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Energy efficiency  vs uncorrelated energy spread η δ

Process:

‣ Increasing efficiency by increasing positron load

‣ Re-optimize drive beam size for each value of the positron load

ηp→t =
Nt⟨Ez⟩t

Nd⟨Ez⟩d

‣ Determine uncorrelated energy spread δ
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Energy efficiency  vs uncorrelated energy spread η δ
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‣ Increasing efficiency by increasing positron load

‣ Re-optimize drive beam size for each value of the positron load

ηp→t =
Nt⟨Ez⟩t

Nd⟨Ez⟩d

‣ Determine uncorrelated energy spread δ

Note: quasi-matching here is ensured for micron-scale normalised emittance, 
plasma density is kept fixed at 5 1016 cm−3
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Energy efficiency  vs uncorrelated energy spread η δ

Process:

‣ Increasing efficiency by increasing positron load

‣ Re-optimize drive beam size for each value of the positron load

Regimes considered here with uniform plasma:

ηp→t =
Nt⟨Ez⟩t

Nd⟨Ez⟩d

‣ Determine uncorrelated energy spread δ

‣ Linearly-driven plasma wakefield, linear or nonlinear positron load

‣ Moderately nonlinear regime, driver with  and nb/n0 ∈ [1, 2] Λ < 1

‣ Nonlinear plasma wakefield with donut-shaped drivers

Note: quasi-matching here is ensured for micron-scale normalised emittance, 
plasma density is kept fixed at 5 1016 cm−3
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Energy efficiency  vs uncorrelated energy spread η δ

Observations:
‣ At low drive charge (38 pC), can reach with , but 

positron charge is limited to 5 pC and 
η ∼ 30 % δ ≲ 1 %

Ez ∼ 1 GV m−1
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‣ At higher drive charge (152 pC), drive beam size can no longer be 
optimised for because otherwise it becomes nonlinear. This 
results in large , unless the efficiency is limited to 

η ≳ 20 %
δ η ≲ 10 %
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‣ At higher drive charge (152 pC), drive beam size can no longer be 
optimised for because otherwise it becomes nonlinear. This 
results in large , unless the efficiency is limited to 
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δ η ≲ 10 %

‣ When continuing to optimise drive beam size at high drive charge 
(152 pC), one transitions to a moderately nonlinear regime. 
with  possible with 25 pC of positron charge and 

.

η ∼ 40 %
δ ≲ 1 %

Ez ≃ 5 GV m−1
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Energy efficiency  vs uncorrelated energy spread η δ

Observations:
‣ At low drive charge (38 pC), can reach with , but 

positron charge is limited to 5 pC and 
η ∼ 30 % δ ≲ 1 %

Ez ∼ 1 GV m−1

‣ Nonlinear donut drivers: very high fields and positron charges, but 
degraded tradeoff between  and . Limited to  for 

.
η δ η ≲ 5 %

δ ≲ 1 %

‣ At higher drive charge (152 pC), drive beam size can no longer be 
optimised for because otherwise it becomes nonlinear. This 
results in large , unless the efficiency is limited to 

η ≳ 20 %
δ η ≲ 10 %

‣ When continuing to optimise drive beam size at high drive charge 
(152 pC), one transitions to a moderately nonlinear regime. 
with  possible with 25 pC of positron charge and 

.

η ∼ 40 %
δ ≲ 1 %

Ez ≃ 5 GV m−1



The positron problem 
Plasma electron motion and transverse beam loading
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

Figure of merit:  
luminosity per power

ℒ ≈
1

8πmec2

Pwall

βxϵnx

ηN

βyϵny

ℒ
Pwall

∝ ℒ̃P =
ηextrQ̃

ϵ̃n

with:
ϵ̃n = kp ϵnxϵny

Q̃ = 4πrekpN

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

Why such a big gap?

positron gap

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

Why such a big gap?

positron gap

‣ Plasma electrons used for positron focusing 
are very light, much lighter than ions used 
for electron focusing in blowout:

me ≪ mi

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

Why such a big gap?

ion motion 

positron gap

‣ Plasma electrons used for positron focusing 
are very light, much lighter than ions used 
for electron focusing in blowout:

me ≪ mi

‣ Plasma electron motion similar to ion 
motion in blowout, and can be described 
by a phase advance in the bunch:

Δϕi ≃ kiΔζ =
μ0e2

2
ZσzN

mi

reγn0

ϵnxϵny

Δϕe ≃ keΔζ =
μ0e2

2
σzN

γpeme

reγΔn
ϵnxϵny

electron motion 

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

What can we learn about 
plethora of schemes?

‣ Regimes overcoming 
 limit are the 

most promising. 
Δϕe ≲ π/2

‣ Charge also very important, 
favouring nonlinear regimes.

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

Strategies to fill the gap: 

‣ Slice-by-slice matching

‣ Plasma electron temperature

‣ Spread plasma electrons: different plasma 
electrons to focus different positron beam 
slices

Δ
ϕ e

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

Strategies to fill the gap: 

‣ Slice-by-slice matching

‣ Plasma electron temperature

‣ Spread plasma electrons: different plasma 
electrons to focus different positron beam 
slices

‣ Energy recovery to improve efficiency 
(next talk from S. Gessner)

‣ Decrease emittance to compensate for 
low efficiency in ℒ̃P

Δ
ϕ e

η e
xt

r

https://doi.org/10.48550/arXiv.2309.10495
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The positron problem

Cao, Lindstrøm et al., arXiv:2309.10495 (2023)

Strategies to fill the gap: 

‣ Slice-by-slice matching

‣ Plasma electron temperature

‣ Spread plasma electrons: different plasma 
electrons to focus different positron beam 
slices

‣ Energy recovery to improve efficiency 
(next talk from S. Gessner)

‣ Decrease emittance to compensate for 
low efficiency in ℒ̃P

‣ High Lorentz factor for plasma electrons

‣ Low focusing and large beta function

Δ
ϕ e

η e
xt

r

https://doi.org/10.48550/arXiv.2309.10495
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Conclusion

• Energy efficiency comes with a strong positron load, and thus with transverse 
beam loading 

• For most regimes, there is a tradeoff between energy efficiency and beam quality 
(e.g. emittance, uncorrelated energy spread) 

• Luminosity-per-power scaling and electron motion highlights future directions



Thank you for your attention


