Proton Beam Self-Modulation Instability in a DC Discharge Plasma Source at AWAKE

<u>C. Amoedo¹</u>, N. Lopes², N. Torrado², P. Muggli³, L. Verra¹, M. Turner¹, G. Zevi Della Porta^{1,3}, J. Pucek³, M. Bergamaschi³, A. Clairembaud¹, J. Mezger³, F. Pannell⁵, N. Z. van Gils¹, E. Gschwendtner¹, M. Taborelli¹, A. Sublet¹ and *the AWAKE Collaboration*

¹CERN, Geneva, Switzerland, ²GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³Max Planck Institute for Physics, Munich, Germany, ⁵UCL, London, United Kingdom

Cathode

Alternative plasma sources for AWAKE

- AWAKE (the Advanced WAKefield Experiment) explores plasma wakefield acceleration of electrons, using proton bunch as driver.
- AWAKE requires plasma sources capable of reaching **densities of 1 to 10x10¹⁴ cm⁻³**, and that allow extending the acceleration **length from tens to** hundreds of meters, beyond the limit of the present laser-ionised rubidium vapor plasma source^[1].

DPS tests with protons in AWAKE, 2023 Why?

- Unique opportunity to test an alternative plasma source \rightarrow important for AWAKE run 2c and beyond ^[3]
- show that the propagation of a proton bunch in a DPS plasma results in the usual self modulation instability (SMI) signature

DC Discharge Plasma Source (DPS) is based on^[2]:

• **Double-pulse arc discharge** produced between two electrodes at the extremities of long dielectric tubes, filled with Ar/Xe/He at low pressure:

anode cage

- The ignition pulse (up to 40 kV) establishes a low-current plasma (~10 A)
- The heater pulser allows for a **high current (up to 600 A)** to achieve the plasma density target

10 m

Plasma

- SMI with different lengths: 10 m single, 6.5 m, 3.5 m and 6.5+3.5 m
- SMI with different gases: He, Ar, Xe, to assess the effect of increasing ion mass
- reaching densities > 1x10¹⁵ cm⁻³ to study Current Filamentation Instability (CFI)

How?

delaying the plasma main current (heater) with respect to the passage of the 400 GeV proton bunch \rightarrow scan different densities

Anode

Ar 24 Pa, 500 A, 10 m single, p+ bunch delay to plasma current

References:

[1] P Muggli et al. (AWAKE Collaboration), 2018 Plasma Phys. Control. Fusion 60, 014046 (2018) [2] N. Torrado *et al.*, IEEE Transactions on Plasma Science (2023. submitted) [3] E. Gschwendtner, *et al*. (AWAKE Collaboration), Symmetry 2022, 14(8), 1680

This poster presentation has received support from the European Union's Horizon 2020 **Research and Innovation programme under** Grant Agreement No 101004730.

Conclusion

- The usual SMI signature was observed with the DPS
- Interferometry lab measurements in good agreement density obtained with SMI
- Variety of SMI and CFI studies were possible thanks to the DPS flexibility of operation with different plasma lengths/gases/densities