SHADOWGRAPHY OF THE PLASMA'S EVOLUTION AROUND WATER
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We present the results of a laser-driven plasma evolution experiment at the POLARIS laser system at the Institute for Optics and Quantum Electronics at the
Friedrich-Schiller-University Jena and the Helmholtz-Institute Jena [1]. The interaction of a high intensity main laser pulse with water microdroplet targets was
investigated with off-harmonic optical probe pulses. In contrast to experiments with thin foils, the spherical symmetry of droplets facilitates a direct imaging of
the plasma expansion process using shadowgraphy. By changing the temporal delay of the probe laser with respect to the main laser, the expansion process was
probed in a temporal window between -4.7 to +258 ps relative to the arrival of the main laser pulse. The strong emission of light from the laser-induced plasma at
the fundamental and second harmonic frequency was suppressed with a bandpass filter, a polarization filter and a spatial filter (coronagraph). A detailed analysis
of the shadowgraphic images allowed us to estimate the plasma expansion velocity of the front and rear side of the droplets at early times of the interaction.
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* Implementation of a pump-probe setup in a
water-based microdroplet experiment to study
the temporal evolution of the plasma using
shadowgraphy
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