

SHADOWGRAPHY OF THE PLASMA'S EVOLUTION AROUND WATER **MICRO-DROPLETS IRRADIATED BY HIGH-POWER LASER PULSES**

Helmholtz-Institut Jena

M. Beyer^{1,2}, Y. Azamoum^{1,2}, M. Nolte¹, G. A. Becker¹, M. B. Schwab^{1,2}, M. Hornung^{1,2}, M. Hellwing¹, T. Weickhardt¹, and M.C. Kaluza^{1,2}

> ¹Institute of Optics and Quantum Electronics Jena, Germany ²Helmholtz Institute Jena, Germany

We present the results of a laser-driven plasma evolution experiment at the POLARIS laser system at the Institute for Optics and Quantum Electronics at the Friedrich-Schiller-University Jena and the Helmholtz-Institute Jena [1]. The interaction of a high intensity main laser pulse with water microdroplet targets was investigated with off-harmonic optical probe pulses. In contrast to experiments with thin foils, the spherical symmetry of droplets facilitates a direct imaging of the plasma expansion process using shadowgraphy. By changing the temporal delay of the probe laser with respect to the main laser, the expansion process was probed in a temporal window between -4.7 to +258 ps relative to the arrival of the main laser pulse. The strong emission of light from the laser-induced plasma at the fundamental and second harmonic frequency was suppressed with a bandpass filter, a polarization filter and a spatial filter (coronagraph). A detailed analysis of the shadowgraphic images allowed us to estimate the plasma expansion velocity of the front and rear side of the droplets at early times of the interaction.

Experimental setup and diagnostics

- **POLARIS** at 1030 nm, contrast enhanced with plasma mirror, $\tau \approx 150$ fs (FWHM), $I = 4 \times 10^{19} \text{ W} / \text{ cm}^2, a_0 \approx 5.5$, linear polarization

Shadowgraphy measurement

- Water droplets with $d \approx 20 \,\mu\text{m}$, commercial nozzle (Micro Jet Components), synchronized with laser
- Optical probe system [2]: single pass NOPA, µJ-level energy, broad bandwidth between 750-950 nm, spectrally filtered after interaction to 800 nm (40 nm FWHM).
- Imaging setup: Mitutoyo NIR 10x objective (d), wedged glass plate (Brewster angle) + spatial filter (coronagraph) to suppress the strong plasma emission and scattered light from the main laser pulse, reference setup (probe 1) for comparison
- **Coronagraph**: circular mask of diameter $d = 300 \,\mu\text{m}$ placed in the intermediate image plane of the droplets

Fig. 1: Shadowgraphic images of water droplets with coronagraph for different pump-probe delays τ (top left). The laser energy E on the target is also shown (bottom left) [1].

Plasma Expansion

Summary

- $\cdot \tau = 0$: blackening of the neighbouring droplets due to generation of plasma \Rightarrow $n_e \gg n_c = 1.74 \times 10^{21}$ / cm³ at 800 nm
- Growing spatial extent of the dark volume (overcritical plasma) for increased delays
- Edge of the dark region corresponds to $n_e \ll n_c$ [3], still, the expansion of the shadow can be measured
- Delays τ < 20 ps: front and rear side grow along the laser axis linearly: velocity $v_{\text{front}} \approx 1.27 \,\mu\text{m}$ / ps and $v_{\text{rear}} \approx$ $0.77 \,\mu\text{m}$ / ps \Rightarrow comparable to similar experiments with liquid targets [4, 5]
- Estimated **ion sound speed**:

 $c_s = 0.25 \,\mu\text{m} / \text{ps} (\text{for } n_e = 153 n_c)$

- after the interaction: decreasing electron temperature, change of expansion geometry to spherical expansion \Rightarrow smaller expansion velocity for larger times
- Ponderomotive scaling for hot electrons ($k_B T_e \approx 2.4$ MeV) leads to an ion sound speed of $c_s \approx 15 \,\mu\text{m/ps}$ $(protons) \Rightarrow$ disagreement of measured values may indicate a different intensity scaling or that the hot electron plasma model cannot be applied
- 150 n µm 100 **>** 50 $\tau = -3.1 \, \text{ps}$ 3.0 ps 5.0 ps 15 ps 21 ps 11 ps 37 ps 60 •Front-side expansion Rear-side expansion hm 50 40 expansio 30 Linear fit: $\Delta x = m \cdot \tau + m$ m = 1.27(6), n = 0.5(6)20 20 m = 0.77(5), n = 1.0(5)shadow 10 20 10 15 -10 160 20 40 120 140 180 60 temporal delay τ in ps
- Implementation of a pump-probe setup in a water-based microdroplet experiment to study the temporal evolution of the plasma using shadowgraphy
- Successful suppression of the plasma emission and main laser light scattering by using an off-harmonic spectral filter, a polarization filter and coronagraph
- Measurement of the evolution of the plasma expansion up to delays of +258 ps,
- Linear expansion in the first 20 ps with an expansion velocity $v_{front} = 1.27 \,\mu m / ps$ (plasma front) and different behaviour on the rear side • Estimated ion sound speed $c_s = 0.25 \,\mu\text{m} / \text{ps}$

Acknowledgements

This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.

IFAST

[1] M. Beyer, Development of Laser Sources and Diagnostics for Probing Relativistic Laser-Matter Interaction, Master thesis, 2022 [2] I. Tamer et al., Few-cycle fs-pumped NOPA with passive ultrabroadband spectral shaping, 2020 [3] M. Nolte, Characterization of liquid micro-droplets for laser-driven proton acceleration, Master thesis, 2023

[4] G. Becker et al., Characterization of laser-driven proton acceleration from water microdroplets, 2019

[5] C. Bernert et al., Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets, Scientific reports, 2022

EUroNNAC4

NPACT supported by EU via I-FAST