

Surrogate models replace the numerical code to decrease computational costs and sample simulations fast.

Surrogate model of the beam transport³ Surrogate model of undulator radiation

Stated problem: reconstruct expected distributions of electrons at imagers in the beamline for the given LPA parameters (c: number of an imager and LPA parameters).

Data: each electron in a bunch is given by 6 coordinates in phase space. Training/Validation data was simulated by APS elegant³ for varying LPA parameters.

Acceleration of computations: 10x faster than simulation.

Stated Problem:

Reconstruct undulator radiation by a given electron bunch at the entrance of the undulator.

2. Tejero-Cantero, A. et al. (2020). sbi: A toolkit for simulation-based inference. Journal of Open Source Software, 5(52), 2505.

3. Borland, M. (2000). A flexible sdds-compliant code for accelerator simulation. ANL, Argonne, IL, 60439. 4. Chubar, O., and Elleaume, P. (2013). Synchrotron Radiation Workshop (SRW). No. SRW; 002835MLTPL00. Brookhaven National Lab.(BNL), Upton, NY (United States).

5. Willmann, A. et al. (2023). Learning Electron Bunch Distribution along a FEL Beamline by Normalising Flows. arXiv preprint arXiv:2303.00657 (2023).

Data: spatio-spectral distribution of undulator radiation simulated by SRW code⁴.

Acceleration of computations: 390x faster than simulation.

Summary

- Virtual diagnostics in experiments help to exploit correlations among all experimental data
- Decrease of performance detection and its characterizations available in the beamline
- Identification of well-behaved operating states
- Surrogate models are decreasing requirements to hardware and time consumption of data analysis

ACKNOWLEDGEMENT This poster presentation has received support from the European Union's Horizon 2020 Research and

Innovation programme under Grant Agreement No 101004730.

Anna Willmann | Institute of Radiation Physics | Laser Particle Acceleration | HelmholtzAI | a.willmann@hzdr.de | www.hzdr.de