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Machine Learning-based Data Analysis and 
Surrogate Modeling For COXINEL Experiment 

Automatic inversion of experimental measurements from the last 
imager and UV imaging camera to beam parameters at the source

LPA parameters:
• Energy spread
• Divergence
• Size

Virtual diagnostics provide data from all imagers in a digital 
form with access to the phase space of the beam in the beamline 

The ill-posed inverse problem has no 
unique solution and is resolved up to a 
posterior distribution (probability of LPA 

parameters given observations).

Method: Simulation-based Inference

X

Y

X

Y

Simulator
Beam propagation: 
APS elegant3

Undulator radiation: SRW4

Prior distribiution 
of LPA parameters: 

uniform if no assumptions 
are given

Observation X or Y
Sample LPA 
parameters and 
pass them into 
the simulator 1

Compute simulations of a corresponding 
measurement (X or Y) for sampled parameters

neural 
density 

estimator 
2

Inversion of X

3

Stated problem: reconstruct expected 
distributions of electrons at imagers in the 
beamline for the given LPA parameters 
(𝒄: number of an imager and LPA parameters).

Data: each electron in a bunch is given by 6 
coordinates in phase space. Training/Validation 
data was simulated by APS elegant3 for 
varying LPA parameters.

Acceleration of computations: 10x faster than 
simulation.
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Stated Problem:
Reconstruct undulator radiation by a given electron bunch at the entrance of the undulator.

Ground Truth
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Intensity at 𝑦 = 0

Surrogate models replace the numerical code to decrease computational costs and sample simulations fast.

Surrogate model of the beam transport3 Surrogate model of undulator radiation
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Summary

Inversion of Y

Control and Optimization of a laser-driven Free Electron Laser 
COXINEL1: 
COherent X-ray 
source INferred 
from Electrons 
accelerated Laser

• Virtual diagnostics in experiments help to exploit 
correlations among all experimental data

• Decrease of performance detection and its 
characterizations available in the beamline

• Identification of well-behaved operating states

• Surrogate models are decreasing requirements to 
hardware and time consumption of data analysis

Data: spatio-spectral distribution of undulator 
radiation simulated by SRW code4.

Acceleration of computations: 390x faster than 
simulation.


