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Abstract

The Advanced Wakefield Experiment (AWAKE) relies on
proton-driven wakefields created in a laser-ionized plasma

to accelerate elect

rons.

Accu

rate _measurement and

control of the optics, trajectory and timing of the three

beams—proton, laser and electron—is a fundamental

requirement for successful operation of the facility.
instrumentation and

Continuous advances in both

methods are necessary to improve operational stability,
reproducibility and efficiency. Since the three beams have
drastically different characteristics, their performance is

limited by different sources (such as thermal effects,
magnetic hysteresis, current ripples, phase locking),
requiring dedicated approaches. Recent improvements

and measurement campaign

s are described, highlighting

the lessons learned. Finally,

the challenges expected in

future upgrades of the AWAKE facility are discussed.
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Proton beam jitter is generated by current fluctuations in
the power converters of the transport line magnets

« A quantitative understanding of these source is essential
to simulate and predict jitter at beam waist

« Work is ongoing to fill the gap between simulations and
measurements

Dedicated proton bunch optics were developed using MAD-X and validated with envelope
measurements. These optics were used for wide-beam studies [3] and current filamentation
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Positions of the bunch centroids at the waist.
The left plot includes the drift of the bunch
centroid with the time of the measurement. The
right plot shows the same data with subtracted
time drift [1]
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Transverse envelope of a beam with target oy = 200 um (left) and ox, = 500 um (right) at the entrance of the plasma. [1, 2]

4 laser lines: Plasma, Virtual, Electrons, Streak
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Schematics of AWAKE laser system [L. Ranc]

Challenging steering: jitter of laser trajectory is
dominated by thermal fluctuations, preventing
convergence at larger sample sizes. Accept this
limitation, relax steering requirements, and rely on
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a wide beam to create a large plasma column. fol M‘ A ,,u.‘*
VLC 5, mm RMS alldata  RMS for 100 RMS for 500 RMS for 5000
shot average shot average shot average
y actual | 0.2741 0.1038 0.0832 0.0766
y random | 0.2741 0.0274 0.0123 0.0039
x actual | 0.2772 0.0553 0.0281 0.0155
x random | 0.2772 0.0277 0.0124 0.0039

Standard deviation of all shots and 100-, 500-, 5000-shot averages on virtual line, compared to expected RMS from random fluctuations [6]

Use V|rtual line for aligning/monitoring main line. Understand drifts between main/virtual drifts.
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g Schematic of AWAKE beamline and virtual line alignment [6]
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Trajectory monitoring on virtual line (left). Laser alignment on virtual and main lines (right) [L. Ranc]
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Trajector Orthogonal steering exploits
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* Non-Gaussian beams can be fully described
and then used to develop beam line optics

without fast demagnetisation (Lnin, Inax, Lset) [7]

e to orthogonal steering at BTVA12354, with and

Top: Reconstructed distribution in x-x’ and y-y’. Bottom: Comparison
between reconstructed beam sizes and measurements [7]
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A good understanding of the
sources of beam jitter is essential
to predict the waist jitter in Run 2c.
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18 MeV electron line together with
the developed tools will set the Layout of AWAKE Run 2c¢ [9]
foundations for the much more
challenging operation of Run2c
electron lines at 18 and 150 MeV
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Proton trajectory jitter

Correlate proton trajectory with
power converter jitter, to reach
required precision (10 pm)
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Fig. 6. Beam parameters for the 150MeV electron transfer line, with p-function ; eam  distributions and profiles for a beam with normalised emittance —20
(x: black, y: red) and dispersion D (x: green, y: blue). A synoptic overview is given ;im&m]:ad an::l:1 ltenz&tl o, = Sj pr[r)l tiz:cke; to thle3 injectiof'lh point. 'l}he dstructltltre in
above, with dipoles (green), quadrupoles (black), sextupoles (blue) and octupoles (red). the z— AE/pe distribution ZO riginates from the input distribution. :
Left: Beam parameters and optics layout (dipoles to octupoles, in decreasing width) along the —40 300 100 0 100
150 MeV line. Right: Beam distributions at the injection point after transporting an initial Az [pm]

beam with normalized emittance 2 mm mrad and o, = 84 um [10]

Distribution of relative e-—p+ offsets at injection,
considering jitter on both e- and p+ lines. Experiment
specification (10 um) shown in orange [10]
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