<u>GA</u>-assisted <u>Single-shot</u> <u>3D-charge-density</u> reconstruction of a laser wakefield kilo-ampere electron bunch via a <u>TR-EO</u> detector

Kai Huang^{1,3*}, Zhan Jin^{2,3}, Nobuhiko Nakanii^{1,3}, Tomonao Hosokai^{2,3}, Masaki Kando^{1,3}

¹Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kyoto, Japan ²SANKEN, Osaka University, Osaka, Japan ³Laser Accelerator R&D, Innovative Light Sources Division, RIKEN SPring-8 Center, Hyogo, Japan

*Email: huang.kai@qst.go.jp

LAPLACIAN platform for laser electron acceleration

.

Laser wakefield acceleration (LWFA)

LWFA: 100 GV/m

Present achievements of LWFA:

Maximum energy: **7.8 GeV** (Berlekey) Smallest energy spread: **0.4%** (rms) (SIOM) Highest repetition rate: 1 kHz (LOA) Highest charge: 0.3 nC (FWHM) (HZDR) FEL @ **27 nm** (SIOM) **100000 shots** (Hamburg U)

T. Tajima and J. Dawson, Phys. Rev. Lett. 43, 267 (1979); W. P. Leemans et al., AAC (2018); W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016); W. Wang et al., Nature 595, 516 (2021); D. Gunot et al., Nat. Photonics 11, 293 (2017); J. P. Couperus et al., Nat. Communications. 8, 487 (2017); A. R. Maier et al., PRX 10, 031039 (2020); Jens Osterhoff. DESY. 2017; T. Esirkepov, REMP code.

Why the electron bunch 3D charge density Q_{3D} is important for LWFA

High energy physics X-ray pump-probe studies Time-resolved dosimetry

Luminosity in a collider Brightness of secondary X-ray sources Peak dose rates of radiation

For the lasing process in an undulator

Our approach: EO sampling

(a) Polarization after Coulomb field Or Transition Radiation EO crystal Polarization before

Pockels effect

EO spatial decoding

Temporal mapping relationship:

 $c\Delta \tau = \Delta \xi tan \theta_p$

Merits:

- Non-destructive (sometimes not)
- ② Single-shot (overcome shot to shot variation exists in LWFA)

J. Shan et al., Optics Letters 25, 426 (2000); I. Wilke et al., PRL 88, 124801 (2002); A. L. Cavalieri et al PRL. 94, 114801 (2005); S. Casalbuoni et al., PRAB 11, 072802(2008); B. Steffen et al., PRAB 12, 032802 (2009); W. Wang et al., PRAB 20, 112801 (2017); K. Huang et al., PRAB 22, 121301 (2019); K. Huang et al., Sci. Reports 8, 2938 (2018) and many others...

Previous experiments in LWFA, detection on transition radiation (TR)

J. van. Tilborg et al., PRL 96, 014801 (2006)

A. D. Debus et al., PRL 104, 084802 (2010)

(TR were partially collected, ZnTe 200 μ m faces the first absorption valley around 4 THz, Absolute current file not discussed, TR transmitted through the crystal were not analyzed further)

Concept of such a TR-EO detection, and more...

EO sampling basically measures the TR field information. Much more can be achieved with such a mesurement

1. Optical TR (OTR) can be used simultaneously to achieve the <u>transverse profile at μ m level</u>. Such spatial resolution is difficult for phosphor screens (Lanex, DRZ...)

2. Transverse electron profile need to be measured at the source plane for <u>absolute current measurement</u>

$$E_{image} = g_{\perp}^{bunch}(x, y) * E_0$$

3. EO sampling measures the field of TR. The image of TR field has <u>spatial frequency distribution</u>. One needs to know the spatial point where EO decoding signal is analyzed.

 $E_{image}(x, y, \omega)$

Our study on the LAPACIAN platform

Electron timing fluctuation outside the plasma

Electron <u>3D charge density</u> reconstruction via experimental measurement of OTR and EO signal. Numerical effort of TR imaging and EO spatial decoding. Genetic Algorithm

Single-shot monitoring of electron bunch timing outside plasma

Experiment

Extremely small fluctuation (outside plasma) Standard deviation: 7 fs

Kai Huang et al Appl. Phys. Express 15. 036001 (2022) (Monthly Spotlight and Annual Highlight)

Numerical effort of examining the calculation model

Many issues have been dealt with:

- 1. Multi-color imaging (0 > 200 THz). Huygens-Fresnel, step by step OR Fraunhofer
- 2. Multi-electron-energy. Weight of each energy component. Energy chirp can be neglected for short bunch
- 3. Temporal elongation of probe laser
- 4. Transverse TR distribution
- 5. Temporal distortion of TR in EO crystal
- 6. Formulation of the phase retardation considering the angle between the probe and the TR
- 7. Code vectorization for speeding up the GA calculation
- 8. Other issues.

K. Huang et al., arXiv:2308.11853 [physics.acc-ph], submitted to PRAB

Summary

Electro-optic 3D snapshot of electron bunches at any position in the beam transport line Timing jitter, 3D size, absolute current, charge density

Next:

- 1. Shorter probe laser; Thinner EO crystal; Try new EO crystal species; Detailed EO crystal property investigation at high frequency range
- 2. Analysis on the overall 2D EO signal. Try to optimize the method for Q(x, y, z) reconstruction
- 3. Machine learning on the overall detection system

Thank you for your attentions

This work was funded by

<u>ImPACT</u> Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan)

& JST-Mirai Program「未来社会」, Grant Number JPMJMI17A1, Japan &

JSPS KAKENHI「科研費」, Grant-in-Aid for Early-Career Scientists (JP23K17152, JP21K17998) &

QST President's Strategic Grant (Exploratory Research 2020 2021 2022)

