Radioisotope production using a high-repetition-rate, laser-based proton source (ID 236)

Adrián Bembibre ${ }^{1, *}$, J. Peñas ${ }^{1}$, J. I. Apiñaniz², C. Guerrero ${ }^{3,4,}$, J. L. Henares², M. A. Millán-Callado ${ }^{3,4}$, P. Puyuelo-Valdes², M. Seimetz², J. Benlliure ${ }^{1}$, A. Alejo ${ }^{1}$
 ${ }^{\text {D D D }}$ Dt. Física Atómica, Molecular y Nuclear ((FAMN), Facultad de Física. Universidad de Sevilla (Spain) ${ }^{4}$ Centro Nacional de Aceleradores (CAN, US - Junta de Andalucía - CSIC, Sevilla (Spain)

Motivation: radionuclides in medicine

\qquad
radioisotopes are centrally produced in large and expensive conventional accelerators
${ }^{18} \mathrm{~F}$ is almost the only
radioisotope used [1]

Laser-based accelerators are an alternative for in-situ and on-demand production [1, 2]
 Increased availability of radioisotopes

with shorter lifetimes				
$\mathbf{T}_{\mathbf{1 / 2}}$ [$\left.\mathbf{m i n}\right]$	${ }^{11} \mathbf{C}$	${ }^{\mathbf{1 3}} \mathbf{N}$	${ }^{15} \mathbf{O}$	${ }^{18} \mathbf{F}$

For medical imaging, such as Positron Emission Tomography (PET), an activity of hundreds of MBq is necessary [2]

Hundreds of shots at a relatively high repetition rate to overcome the radiation decay

The target: rotating wheel

1 Hz acceleration using a PW laser

- This wheel system has been used at CLPU - PW arm.

Energy [MeV]
Cut-off energies up to 15 MeV with stability better than $\mathbf{1 0 \%}$ were observed.

Advantages

- Suitable for multiple materials and thicknesses.
Operations at up to 10 Hz .
Quick target replacement.
- The target is automatically positioned with $\boldsymbol{\sigma}=\mathbf{3 . 5} \boldsymbol{\mu} \mathbf{m}$.

10 Hz demonstration

Wheel operation at 10 Hz has been demonstrated using the 45 TW laser installed at Laboratorio Láser de Aceleración y Aplicaciones (L2A2).
Dedicated wheel designed to allow $\mathbf{> 5 0 0 0}$ shots at $\mathbf{1 0} \mathbf{~ H z}$.

Radioisotope production

Radionuclides are produced through activation of a secondary target with the accelerated particles. Carbon-11 has been successfully produced via ${ }^{11} B(p, n){ }^{11} \mathrm{C}$ reaction during the experimental campaign at CLPU.

Energy [MeV]

Activity diagnostics developed in-house for invacuum irradiation and detection, based on two Csl scintillators working on coincidence.
Measured activity higher than 230 kBq from a burst of only 20 shots with an activity $>12 \mathrm{kBq}$ per shot.

Experimental results!
$\mathrm{T}_{1 / 2}\left({ }^{11} \mathrm{C}\right)=1221.8 \mathrm{~s}$

Acknowledgements
This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation
programme under Grant Agreement No 101004730. It has been also supported by Spanish Ministerio de Ciencia e Innovación within the framework of the FPI predoctoral RETOS project (RTI2018-101578-B-C21) and by Xunta de

References

[1] A. Macchi, M. Borghesi, and M. Passoni, Reviews of Modern Physics 85.2 (2013): 751 [3] Tayyab, M., et al. Plasma Physics and Controlled Fusion 61.11 (2019): 115007.

Under optimal conditions at L2A2, estimations predict that clinical activities can be reached with several minutes of irradiation at 10 Hz .

	a_{0}	$\mathrm{E}_{\text {max }}[\mathrm{MeV}]$	Rep. rate [Hz]	A@30min [MBq]
CLPU (25 J)	20.23	9.97	1.87	109.77
	3.9	3.6	10	16
L2A2 (opt)	9.6	8.9	10	177

