SIMULATION STUDY ON THE IMPACT OF A SINGLE PLASMA ACCELERATOR STAGE TO EXISTING FREE-ELECTRON LASERS

<u>S. Schröder^{1,2}, J. Osterhoff¹, S. Wesch¹ and C. B. Schroeder²</u>

¹ Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ² Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA

A plasma-based energy booster to an existing free-electron laser is an essential first application to demonstrate maturity of this novel accelerator technology.

POTENTIAL IMPACT OF AN ENERGY BOOSTER

- > Reaching shorter X-Ray wavelength,
- e.g., FLASH could cover the full water window (with both beam lines).
- e.g., LCLS-II wavelength range could be largely extended.
- > Parallel operation of beam lines at different beam energies,
- e.g., boosting the high-gain beam lines of SwissFEL and EuXFEL when operating at low energies enhances user flexibility.
- > Compensation for gradient reduction in SRF acceleration structures when operating in CW mode (FLASH, EuXFEL).

Challenges:

REACH OF A SINGLE PLASMA STAGE

- A RUDIMENTARY SIMULATION ESTIMATE

Methodology of simulation study

- Drive beam $\hat{=}$ available beam at facility with:
 - a. Maximum charge, maximum energy.
 - b. 80% maximum peak current.
- II. Scanning trailing bunch position (\propto acc. gradient).
 - a. Field flattening via bunch current shaping.
 - b. Maximising charge.
- III. Scanning plasma density, $k_p \sigma_z$: [0.6, 1.8].

Stringent demands are placed on the bunch generation:

	Charge (nC)		Peak current (kA)		Bunch length (µm)		Bunch Sep. (µm)	Emittance (µm)
	Q_{acc}	<i>Q</i> _{drive}	$I_{p,acc}$	I _{p, drive}	$\Delta \zeta \left(I > 100A \right)$	$\sigma_{\zeta, drive}$	$ \mu_{drive} - \mu_{acc} $	E
FLASH	[0.3, 1]	1	[2, 3.5]	2	[70, 220]	60	[200, 250]	0.5
SwissFEL	[0.050, 0.3]	0.2	~3	0.8	[25, 40]	12	[35,45]	0.1
EuXFEL	[0.1,1]	1	[4, 8]	6	[40,150]	30	[100, 150]	0.1
LCLS-II	[0.01, 0.2]	0.1	~2	0.8	[30,40]	10	[35, 40]	0.1

Aiming at different accelerated bunch charges:

$Q_{acc} = Q_d$	E_{acc} (GeV/m)	TR	L _{dep} (m)
FLASH	1	0.5	0.7
SwissFEL	5	0.5	0.6
EuXFEL	4	0.7	3
LCLS-II	4	0.5	0.5

$Q_{acc} = 1/2 Q_d$	E_{acc} (GeV/m)	TR	L _{dep} (m)
FLASH	2	1.5	2
SwissFEL	10	1	0.6
EuXFEL	7	1	2
LCLS-II	8	1	0.5

CONCLUSIONS

- > A single-stage plasma booster in an FEL has various use-cases.
- > FLASH, LCLS-II and EuXFEL are prominent candidates for a plasma booster.
- > Bunch generation and shaping is a critical aspect to be studied in greater detail.
- > Optional operation schemes for a booster may reduce technical demands.

Work at DESY financed through the Helmholtz field study fellowship.

Work at LBNL supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement No 101004730.

Sarah.schroeder@desy.de

6TH EUROPEAN ADVANCED ACCELERATOR CONCEPTS WORKSHOP, LA BIODOLA BAY, ELBA, ITALY 2023