E-320: Current Status and Future Plans

A. Knetsch on behalf of the E-320 Collaboration

SLAC National Accelerator Laboratory

Stanford University

The collaboration

Carleton University, Ottawa, Ontario, Canada	Thomas Koffas		
Aarhus University, Aarhus, Denmark	Christian Nielsen, Allan Sørensen, Ulrik Uggerhøj		
École Polytechnique, Paris, France	Sébastien Corde, Pablo San Miguel Clave, Mickael Grech, Aimé Matheron, Sebastian Meuren (PI), Caterina Riconda		
Technical University (TU) of Darmstadt	Stephan Kuschel, Christian Rödel		
MPI für Kernphysik, Heidelberg, Germany	Antonino Di Piazza, Christoph H. Keitel, Matteo Tamburini		
HI Jena and University of Jena, Germany	Harsh, Felipe Salgado, Jannes Wulff, Matt Zepf		
Universidade de Lisboa, Portugal	Thomas Grismayer, Luis Silva, Marija Vranic		
Imperial College London, UK	Stuart Mangles		
Queen's University Belfast, UK	Niall Cavanagh, Elias Gerstmayr, Gianluca Sarri, Matthew Streeter		
California Polytechnic State University, CA USA	Robert Holtzapple & students		
Lawrence Livermore National Laboratory, CA USA	Félicie Albert		
SLAC National Accelerator Laboratory and Stanford PULSE Institute, Menlo Park, CA USA	Robert Ariniello, Phil Bucksbaum, Christine Clarke, Angelo Dragone, Alan Fisher, Frederico Fiuza, Alan Fry, Spencer Gessner, Siegfried Glenzer, Carsten Hast, Mark Hogan, Chris Kenney, Alexander Knetsch (POC), Doug McCormick, Rafi Mir-Ali Hessami, Brendan O'Shea, David Reis, Tania Smorodnikova, Douglas Storey, Glen White, Vitaly Yakimenko		
University of California Los Angeles, CA USA	Chan Joshi, Warren Mori, Brian Naranjo, James Rosenzweig, Oliver Williams, Monika Yadav		
University of Colorado Boulder, CO USA	Chris Doss, Michael Litos		
University of Nebraska - Lincoln, NE USA	Matthias Fuchs, Junzhi Wang		
Former members	Zhijiang Chen, Henrik Ekerfelt, Erik Isele		

In the vicinity of strong electric fields the Dirac equation is modified

$$(i\hbar\gamma^{\mu}\partial_{\mu} - e\gamma^{\mu}A^{\text{ext}}_{\mu} - mc)\psi = 0$$

• Non linear inverse Compton scattering :

Non linear Breit-Wheeler pair creation :

$$\gamma + n\omega \rightarrow e^- + e^+$$

Leading parameters for laser-electron beam collsion experiments

E-144: first observation of nonlinear Compton scattering

SLAC E-144 (simulation)

Bula et al., PRL 76 (1996) Bamber et al., PRD 60 (1999)

Reaching extreme laser intensities: Lorentz boost

Yakimenko et al., PRAB 22, 101301 (2019)

FACET-II Facility for Advanced Accelerator Experimental Tests

FACET-II electron beam parameters

- Up to 2 nC bunch charge
- ~ 10 GeV beam energy
- Bunch length (rms) < 100 μm

FACET-II laser parameters

- ~ 300 mJ on target
- ~ 60 fs pulse length
- a₀ > 1
- χ~1

FACET-II experimental area

3D walkthrough https://my.matterport.com/show/?m=E6rRJHvAB27

E-320 interaction point (IP)

Current laser parameters

Energy on target	0.28-0.38 J	Strehl ratio	~0.5
Compressor window	0.96 %	Pulse duration	~60 fs
Compressor	0.7 %	Spot size (FWHM)	2-3 µm
Probe splitter	0.8 %	wavelength	0.8 µm
Transport efficiency	0.88 %	f#	~2
MPA output	0.6-0.8 J	Beam diameter	40 mm

$$a_0 \approx 0.60 \,\mu\text{m}^{-1}\lambda \sqrt{2I_0/(10^{18}\,\text{Wcm}^{-2})}$$
$$I_f \approx 0.7812 \frac{\mathcal{E}_L}{\text{FWHM}^2 \tau_0} \quad \begin{array}{c} \text{Peak} \\ \text{intensity} \\ \text{(Airy disk)} \end{array}$$

Expected achievable: $\geq 3x10^{19}$ W/cm² (ao \geq 4)

Focal scan: wavefront aberrations clearly visible

Study by Junzhi Wang, Robert Ariniello, et al.

Finding spatial overlap: knife-edge scan

ECOLE POLYTECHNIQUE

SLAC

Stanford. PULSE Institute

YAG position scan: up/down and left/right (analogue) gamma signal (dump) & laser spot (MO camera)

E-320 run on August 19, 2022 (dataset 2918)

Finding temporal overlap: YAG-timing tool

- e-beam arrives early: carriers are induced
- Laser transmission is reduced
- Rise time: \lesssim 1ps, carrier lifetime: \gtrsim 100 ps
- 10 ns window covered with only 100 shots
- Transition marks synchronous time-of-arrival between electron beam and laser

First successful collisions (August 2022)

Gamma signal: electron-laser relative timing

main e-beam: (filter removed

Electron spectrum: net absorption of 1&2 laser photons

Estimation of the (peak) laser intensity (2022 beamtimes)

- $a_0 < 1$ can be estimated from cutoff energies
- Indication to improve laser quality and pulse length
- Extensive efforts ongoing to improve wavefront

Conservation of quasi-momentum (linear polarization) $k^{\prime\mu}=lk^{\mu}+q^{\mu}-{q^{\prime}}^{\mu}, \quad q^{\mu}=p^{\mu}+rac{m^{2}a_{0}^{2}}{4pk}k^{\mu}, \quad q^{\prime\mu}=p^{\prime\mu}+rac{m^{2}a_{0}^{2}}{4p^{\prime}k}k^{\mu}$ 9.0 Cutoff energy [GeV] 8.5 2.2 2.0 2.0 l=2 $E_c = 8.2 \,\mathrm{GeV}$ $E_c = 7.3 \,\mathrm{GeV}$ 6.50.20.40.60.81.00.0 a_0

 $a_0 = 0.6 \pm 0.1$ $I_0 = 8 imes 10^{17} \, {
m W/cm^2}$

SLAC

Laser improvements: J. Wang, R. Ariniello, B. O'Shea, A. Knetsch

Laser-wire-like results from a timing scan

- Laser-to-beam timing scans transverse collision location
- Correlation found between x_{col} θ_{photon} and $\theta_{e,scat.}$
- Electron beam has x-x' corellation at collision point
- \rightarrow E-beam is not at waist

SLAC SLAC Stanford. PULSE Institute

Start-2-end modelling

The LUCRETIA Project

- Fast collision code developed
- Calculates 6D phase spaces of electrons and photons after IP (Klein-Nishina)
- E-beam Start-2-end simulation of FACET-II Linac with GPT and Lucretia
- Hand-shake between Lucretia and collision code to include experimental magnet settings an
- Virtual experiment with virtual diagnostics.

Preliminary result:

Double-line feature might origin in off-waist location

Future plans

Future: shot-to-shot high-intensity diagnostic

High-intensity diagnostics: 2nd OAP re-images the focal spot

shot-to-shot timing information via EOS (UC Boulder)

EOS installed in the picnic basket

- electro-optical sampling (EOS) measures relative time-of-arrival between laser and ebeam
- Shot-to-shot non-invasive time-stamping

Hunt-Stone et al., NIMPRA 999, 165210 (2021)

Near-term goal: deploy a silicon-pixel detector with better SNR

shielding to keep ePix safe during "high radiation times"

currently installed: radiation sensor

ePix module provided by the SLAC detector group (Chris Kenney et al.)

Main contributors: Aimé Matheron, Sébastien Corde, Robert Holtzapple, Doug Storey

Detection of 'low-energy' electrons in the Electron Detection Chamber

 Holder for scintillator, mounted on x/y-stage
 (signal could be enhanced via shower in material)

Mirror for 90°-imaging Spectrometer Positron Detection Electron Detection Future pair Dump Table Chamber Dipole Chamber spectrometer Diagnostics Dipole deflection: 40 electrons down, positrons up Stanford. SLAC ÉCOLE POLYTECHNIQUE

Single-positron detection (Jena group)

Tracking: mainly for background suppression (currently LYSO; later: silicon-pixel detectors)

Cherenkov calorimeter (currently lead glass; future: lead fluoride?!)

readout: PMTs

Future: Compton & gamma pair spectrometer (UCLA group)

Compton spectrometer: based on sextupole magnet, energies: 1-30 MeV

SLAC Stanford.

B. Naranjo et al., IPAC2021 THPAB269, THPAB270 (2021)

Stanford/E-320 are looking for postdocs!

Please reach out to Sebastian Meuren <u>sebastian.meuren@polytechnique.edu</u> David Reis <u>dreis@stanford.edu</u> or just talk to me

Thank you for your attention

